Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer

乳腺癌 医学 肿瘤科 基因签名 内科学 转移 基因表达 基因表达谱 淋巴结 基因 阶段(地层学) 癌症 病理 生物 遗传学 古生物学
作者
Yixin Wang,Jan G.M. Klijn,Yi Zhang,Anieta M. Sieuwerts,Maxime P. Look,Fei Yang,Dmitri Talantov,Mieke Timmermans,Marion E. Meijer‐van Gelder,Jack X. Yu,Tim Jatkoe,Els M.J.J. Berns,David Atkins,John A. Foekens
出处
期刊:The Lancet [Elsevier BV]
卷期号:365 (9460): 671-679 被引量:2665
标识
DOI:10.1016/s0140-6736(05)17947-1
摘要

Genome-wide measures of gene expression can identify patterns of gene activity that subclassify tumours and might provide a better means than is currently available for individual risk assessment in patients with lymph-node-negative breast cancer.We analysed, with Affymetrix Human U133a GeneChips, the expression of 22000 transcripts from total RNA of frozen tumour samples from 286 lymph-node-negative patients who had not received adjuvant systemic treatment.In a training set of 115 tumours, we identified a 76-gene signature consisting of 60 genes for patients positive for oestrogen receptors (ER) and 16 genes for ER-negative patients. This signature showed 93% sensitivity and 48% specificity in a subsequent independent testing set of 171 lymph-node-negative patients. The gene profile was highly informative in identifying patients who developed distant metastases within 5 years (hazard ratio 5.67 [95% CI 2.59-12.4]), even when corrected for traditional prognostic factors in multivariate analysis (5.55 [2.46-12.5]). The 76-gene profile also represented a strong prognostic factor for the development of metastasis in the subgroups of 84 premenopausal patients (9.60 [2.28-40.5]), 87 postmenopausal patients (4.04 [1.57-10.4]), and 79 patients with tumours of 10-20 mm (14.1 [3.34-59.2]), a group of patients for whom prediction of prognosis is especially difficult.The identified signature provides a powerful tool for identification of patients at high risk of distant recurrence. The ability to identify patients who have a favourable prognosis could, after independent confirmation, allow clinicians to avoid adjuvant systemic therapy or to choose less aggressive therapeutic options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
是龙龙呀发布了新的文献求助10
刚刚
刚刚
缥缈耷发布了新的文献求助10
2秒前
科研小白完成签到,获得积分10
2秒前
2秒前
lhcshuang发布了新的文献求助10
2秒前
Ava应助可乐采纳,获得10
3秒前
3秒前
4秒前
4秒前
faye完成签到,获得积分10
4秒前
落后易绿完成签到,获得积分20
4秒前
Hello应助阿怪采纳,获得10
4秒前
陆陆大人完成签到,获得积分10
4秒前
万能图书馆应助南宫初兰采纳,获得10
4秒前
傲娇靖巧发布了新的文献求助10
5秒前
冬冬完成签到,获得积分10
5秒前
你眼带笑发布了新的文献求助10
5秒前
Owen应助Tao采纳,获得10
6秒前
斯文败类应助心肌细胞采纳,获得10
6秒前
7秒前
搜集达人应助GBZ采纳,获得10
7秒前
Allisu发布了新的文献求助10
7秒前
小虫学长应助元谷雪采纳,获得10
7秒前
zel13完成签到,获得积分20
7秒前
帅哥完成签到,获得积分10
8秒前
科研通AI5应助周小鱼采纳,获得10
8秒前
9秒前
玩笑完成签到 ,获得积分10
9秒前
9秒前
包包酱发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
满三江完成签到,获得积分10
10秒前
ding应助阿怪采纳,获得10
10秒前
南宫初兰完成签到,获得积分10
11秒前
FashionBoy应助lhcshuang采纳,获得10
12秒前
Owen应助小灰灰采纳,获得10
12秒前
gehao完成签到,获得积分10
12秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832263
求助须知:如何正确求助?哪些是违规求助? 3374589
关于积分的说明 10485521
捐赠科研通 3094361
什么是DOI,文献DOI怎么找? 1703478
邀请新用户注册赠送积分活动 819465
科研通“疑难数据库(出版商)”最低求助积分说明 771554