Hybridization of long short-term memory with Sparrow Search Optimization model for water quality index prediction

超参数 计算机科学 麻雀 期限(时间) 人工智能 序列(生物学) 人工神经网络 深信不疑网络 数据挖掘 单变量 机器学习 多元统计 生态学 生物 物理 量子力学 遗传学
作者
Vince Paul,Ramesh Babu D R,P. Sreeja,T. Jarin,P.S. Sujith Kumar,Sabah Ansar,Ghulam Abbas Ashraf,Sadanand Pandey,Zafar Said
出处
期刊:Chemosphere [Elsevier BV]
卷期号:307: 135762-135762 被引量:15
标识
DOI:10.1016/j.chemosphere.2022.135762
摘要

Water quality (WQ) analysis is a critical stage in water resource management and should be handled immediately in order to control pollutants that could have a negative influence on the ecosystem. The dramatic increase in population, the use of fertilizers and pesticides, and the industrial revolution have resulted in severe effects on the WQ environment. As a result, the prediction of WQ greatly helped to monitor water pollution. Accurate prediction of WQ is the foundation of managing water environments and is of high importance for protecting water environment. WQ data presents in the form of multi-variate time-sequence dataset. It is clear that the accuracy of predicting WQ will be enhanced when the multi-variate relation and time sequence dataset of WQ are fully utilized. This article presents the Water Quality Prediction utilising Sparrow Search Optimization with Hybrid Long Short-Term Memory (WQP-SSHLSTM) model. The presented WQP-SSHLSTM model intends to examine the data and classify WQ into distinct classes. To achieve this, the presented WQP-SSHLSTM model undergoes data scaling process to scale the input data into uniform format. Followed by, a hybrid long short-term memory-deep belief network (LSTM-DBN) technique is employed for the recognition and classification of WQ. Moreover, Sparrow search optimization algorithm (SSOA) is utilized as a hyperparameter optimizer of the proposed DBN-LSTM model. For demonstrating the enhanced outcomes of the presented WQP-SSHLSTM model, a sequence of experiments has been performed and the outcomes are reviewed under distinct prospects. The WQP-SSHLSTM model has achieved 99.84 percent accuracy, which is the maximum attainable. The simulation outcomes ensured the enhanced outcomes of the WQP-SSHLSTM model on recent methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
高会和发布了新的文献求助10
5秒前
小星发布了新的文献求助10
9秒前
9秒前
jie完成签到,获得积分10
10秒前
11秒前
隐形曼青应助秋夜白采纳,获得10
12秒前
科研通AI5应助开放的大侠采纳,获得10
14秒前
隐形曼青应助夜守采纳,获得10
14秒前
15秒前
沐子发布了新的文献求助10
16秒前
菠萝吹雪完成签到,获得积分10
16秒前
jie发布了新的文献求助10
16秒前
16秒前
土豆晴发布了新的文献求助10
16秒前
繁花发布了新的文献求助10
18秒前
sily科研发布了新的文献求助10
20秒前
24秒前
24秒前
25秒前
ansiki完成签到,获得积分10
25秒前
菰蒲完成签到,获得积分20
25秒前
David发布了新的文献求助10
26秒前
26秒前
ding应助科研通管家采纳,获得10
26秒前
cdercder应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
26秒前
elizabeth339应助科研通管家采纳,获得60
26秒前
Owen应助科研通管家采纳,获得10
26秒前
Lucas应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得20
26秒前
烟花应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
cdercder应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845210
求助须知:如何正确求助?哪些是违规求助? 3387334
关于积分的说明 10548971
捐赠科研通 3108085
什么是DOI,文献DOI怎么找? 1712365
邀请新用户注册赠送积分活动 824385
科研通“疑难数据库(出版商)”最低求助积分说明 774751