Magnetic resonance imaging pattern learning in temporal lobe epilepsy: Classification and prognostics

颞叶 磁共振成像 癫痫 内嗅皮质 萎缩 心理学 队列 海马体 海马硬化 一致性 医学 内科学 神经科学 放射科
作者
Boris C. Bernhardt,Seok‐Jun Hong,Andrea Bernasconi,Neda Bernasconi
出处
期刊:Annals of Neurology [Wiley]
卷期号:77 (3): 436-446 被引量:155
标识
DOI:10.1002/ana.24341
摘要

Objective In temporal lobe epilepsy (TLE), although hippocampal atrophy lateralizes the focus, the value of magnetic resonance imaging (MRI) to predict postsurgical outcome is rather modest. Prediction solely based on the hippocampus may be hampered by widespread mesiotemporal structural damage shown by advanced imaging. Increasingly complex and high‐dimensional representation of MRI metrics motivates a shift to machine learning to establish objective, data‐driven criteria for pathogenic processes and prognosis. Methods We applied clustering to 114 consecutive unilateral TLE patients using 1.5T MRI profiles derived from surface morphology of hippocampus, amygdala, and entorhinal cortex. To evaluate the diagnostic validity of the classification, we assessed its yield to predict outcome in 79 surgically treated patients. Reproducibility of outcome prediction was assessed in an independent cohort of 27 patients evaluated on 3.0T MRI. Results Four similarly sized classes partitioned our cohort; in all, alterations spanned over the 3 mesiotemporal structures. Compared to 46 controls, TLE‐I showed marked bilateral atrophy; in TLE‐II atrophy was ipsilateral; TLE‐III showed mild bilateral atrophy; whereas TLE‐IV showed hypertrophy. Classes differed with regard to histopathology and freedom from seizures. Classwise surface‐based classifiers accurately predicted outcome in 92 ± 1% of patients, outperforming conventional volumetry. Predictors of relapse were distributed bilaterally across structures. Prediction accuracy was similarly high in the independent cohort (96%), supporting generalizability. Interpretation We provide a novel description of individual variability across the TLE spectrum. Class membership was associated with distinct patterns of damage and outcome predictors that did not spatially overlap, emphasizing the ability of machine learning to disentangle the differential contribution of morphology to patient phenotypes, ultimately refining the prognosis of epilepsy surgery. Ann Neurol 2015;77:436–446
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wddfz发布了新的文献求助10
刚刚
姐妹大过他完成签到,获得积分20
1秒前
1秒前
2秒前
撒哈拉的故事完成签到 ,获得积分10
2秒前
NexusExplorer应助柳柳采纳,获得10
2秒前
2秒前
2秒前
少年与梦完成签到,获得积分20
2秒前
洁净静竹完成签到,获得积分10
3秒前
3秒前
wanci应助624794951采纳,获得30
3秒前
嘿哈嘿发布了新的文献求助10
3秒前
淡定恋风完成签到,获得积分10
4秒前
蕊蕊发布了新的文献求助10
4秒前
高兴的丝完成签到 ,获得积分10
5秒前
benj完成签到,获得积分10
5秒前
璐璐完成签到 ,获得积分10
5秒前
自强不息发布了新的文献求助10
5秒前
Jessica完成签到,获得积分20
5秒前
6秒前
盟盟完成签到,获得积分10
6秒前
wanci应助zxzuam采纳,获得10
7秒前
汉堡包应助发v关乎就采纳,获得10
7秒前
VESong发布了新的文献求助10
8秒前
西哥发布了新的文献求助10
9秒前
我测你码发布了新的文献求助30
9秒前
10秒前
庞航完成签到,获得积分10
10秒前
明理书萱完成签到,获得积分10
10秒前
可爱的函函应助南烟采纳,获得10
10秒前
zhouxy发布了新的文献求助40
10秒前
巨研田天天完成签到,获得积分10
10秒前
bangbnag完成签到,获得积分20
10秒前
陈同学发布了新的文献求助20
10秒前
11秒前
酷波er应助A辰采纳,获得10
11秒前
zyx完成签到,获得积分20
11秒前
dl完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352249
求助须知:如何正确求助?哪些是违规求助? 4485120
关于积分的说明 13962087
捐赠科研通 4385062
什么是DOI,文献DOI怎么找? 2409251
邀请新用户注册赠送积分活动 1401706
关于科研通互助平台的介绍 1375258