xStream

计算机科学 数据流挖掘 异常检测 架空(工程) 离群值 数据流 特征(语言学) 维数之咒 特征向量 流算法 数据挖掘 噪音(视频) 钥匙(锁) 算法 人工智能 数学 图像(数学) 上下界 电信 操作系统 语言学 数学分析 哲学 计算机安全
作者
Emaad Manzoor,Hemank Lamba,Leman Akoglu
标识
DOI:10.1145/3219819.3220107
摘要

This work addresses the outlier detection problem for feature-evolving streams, which has not been studied before. In this setting both (1) data points may evolve, with feature values changing, as well as (2) feature space may evolve, with newly-emerging features over time. This is notably different from row-streams, where points with fixed features arrive one at a time. We propose a density-based ensemble outlier detector, called xStream, for this more extreme streaming setting which has the following key properties: (1) it is a constant-space and constant-time (per incoming update) algorithm, (2) it measures outlierness at multiple scales or granularities, it can handle (3 i ) high-dimensionality through distance-preserving projections, and (3$ii$) non-stationarity via $O(1)$-time model updates as the stream progresses. In addition, xStream can address the outlier detection problem for the (less general) disk-resident static as well as row-streaming settings. We evaluate xStream rigorously on numerous real-life datasets in all three settings: static, row-stream, and feature-evolving stream. Experiments under static and row-streaming scenarios show that xStream is as competitive as state-of-the-art detectors and particularly effective in high-dimensions with noise. We also demonstrate that our solution is fast and accurate with modest space overhead for evolving streams, on which there exists no competition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助现实的向梦采纳,获得10
1秒前
1秒前
1秒前
Orange应助震动的化蛹采纳,获得10
2秒前
CHENHL发布了新的文献求助50
2秒前
2秒前
2秒前
淡淡安筠发布了新的文献求助20
3秒前
小马甲应助朴素亦绿采纳,获得10
3秒前
sun完成签到 ,获得积分10
4秒前
田田完成签到,获得积分10
4秒前
5秒前
JiaGer完成签到,获得积分10
5秒前
嗯哼发布了新的文献求助10
6秒前
6秒前
小黄发布了新的文献求助10
6秒前
e746700020完成签到,获得积分10
7秒前
ZeKaWa发布了新的文献求助50
7秒前
科研小白完成签到,获得积分10
7秒前
满意的寒凝完成签到 ,获得积分10
7秒前
希望天下0贩的0应助xinying采纳,获得10
9秒前
9秒前
lucky完成签到,获得积分10
10秒前
10秒前
知之然完成签到,获得积分10
11秒前
Tina发布了新的文献求助20
11秒前
Panchael完成签到,获得积分10
11秒前
11秒前
烟花应助sdl采纳,获得10
12秒前
laissez_fairy发布了新的文献求助30
12秒前
努力搞科研完成签到,获得积分10
12秒前
内向的惜芹完成签到,获得积分10
12秒前
倩倩发布了新的文献求助10
13秒前
勿明发布了新的文献求助10
13秒前
14秒前
一盏壶发布了新的文献求助10
14秒前
14秒前
科研通AI5应助QIQI采纳,获得30
15秒前
15秒前
15秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820460
求助须知:如何正确求助?哪些是违规求助? 3363453
关于积分的说明 10422477
捐赠科研通 3081797
什么是DOI,文献DOI怎么找? 1695232
邀请新用户注册赠送积分活动 814983
科研通“疑难数据库(出版商)”最低求助积分说明 768791