Efficient UAV Swarm-Based Multi-Task Federated Learning with Dynamic Task Knowledge Sharing

任务(项目管理) 计算机科学 知识共享 群体行为 联合学习 人机交互 知识管理 分布式计算 人工智能 工程类 系统工程
作者
Yubo Yang,Tao Yang,Xiaofeng Wu,Z. J. Guo,Bo Hu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2503.09144
摘要

UAV swarms are widely used in emergency communications, area monitoring, and disaster relief. Coordinated by control centers, they are ideal for federated learning (FL) frameworks. However, current UAV-assisted FL methods primarily focus on single tasks, overlooking the need for multi-task training. In disaster relief scenarios, UAVs perform tasks such as crowd detection, road feasibility analysis, and disaster assessment, which exhibit time-varying demands and potential correlations. In order to meet the time-varying requirements of tasks and complete multiple tasks efficiently under resource constraints, in this paper, we propose a UAV swarm based multi-task FL framework, where ground emergency vehicles (EVs) collaborate with UAVs to accomplish multiple tasks efficiently under constrained energy and bandwidth resources. Through theoretical analysis, we identify key factors affecting task performance and introduce a task attention mechanism to dynamically evaluate task importance, thereby achieving efficient resource allocation. Additionally, we propose a task affinity (TA) metric to capture the dynamic correlation among tasks, thereby promoting task knowledge sharing to accelerate training and improve the generalization ability of the model in different scenarios. To optimize resource allocation, we formulate a two-layer optimization problem to jointly optimize UAV transmission power, computation frequency, bandwidth allocation, and UAV-EV associations. For the inner problem, we derive closed-form solutions for transmission power, computation frequency, and bandwidth allocation and apply a block coordinate descent method for optimization. For the outer problem, a two-stage algorithm is designed to determine optimal UAV-EV associations. Furthermore, theoretical analysis reveals a trade-off between UAV energy consumption and multi-task performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhu完成签到,获得积分10
刚刚
1秒前
Unstoppable完成签到,获得积分10
2秒前
2秒前
秦梓椋发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助AZX加油采纳,获得10
3秒前
善学以致用应助芳芳采纳,获得10
3秒前
coisini12完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
ztt发布了新的文献求助10
6秒前
hoo完成签到 ,获得积分20
6秒前
女神金完成签到,获得积分10
6秒前
xii驳回了英姑应助
8秒前
8秒前
aike发布了新的文献求助10
8秒前
wuang发布了新的文献求助10
8秒前
默默荔枝发布了新的文献求助30
9秒前
羊1234发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
11秒前
细胞不凋王女士完成签到,获得积分10
11秒前
13秒前
爆米花应助我必中采纳,获得10
13秒前
13秒前
喂喂完成签到,获得积分10
14秒前
杜熙完成签到,获得积分10
15秒前
花栗鼠发布了新的文献求助10
16秒前
喂喂发布了新的文献求助10
16秒前
16秒前
归尘发布了新的文献求助10
17秒前
17秒前
田七的茄子完成签到,获得积分10
17秒前
飞快的雁发布了新的文献求助10
17秒前
春野花枝完成签到,获得积分10
17秒前
浮游应助whl采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950846
求助须知:如何正确求助?哪些是违规求助? 4213481
关于积分的说明 13104765
捐赠科研通 3995430
什么是DOI,文献DOI怎么找? 2186907
邀请新用户注册赠送积分活动 1202153
关于科研通互助平台的介绍 1115408