热解
生物炭
化学工程
材料科学
化学
热解炭
核化学
有机化学
工程类
作者
Gang Zhang,Zhiyun Chen,Tao Chen,Shaojun Jiang,Fatih Evrendilek,Shengzheng Huang,Xiaojie Tang,Ziyi Ding,Yao He,Wuming Xie,Jingyong Liu
标识
DOI:10.1016/j.jes.2022.10.009
摘要
Hazardous waste stream needs to be managed so as not to exceed stock- and rate-limited properties of its recipient ecosystems. The co-pyrolysis of Chinese medicine residue (CMR) and textile dyeing sludge (TDS) and its bio-oil, biochar, and ash quality and quantity were characterized as a function of the immersion of K2CO3, atmosphere type, blend ratio, and temperature. Compared to the mono-pyrolysis of TDS, its co-pyrolysis performance with CMR (the comprehensive performance index (CPI)) significantly improved by 33.9% in the N2 atmosphere and 33.2% in the CO2 atmosphere. The impregnation catalyzed the co-pyrolysis at 370°C, reduced its activation energy by 77.3 kJ/mol in the N2 atmosphere and 134.6 kJ/mol in the CO2 atmosphere, and enriched the degree of coke gasification by 44.25% in the CO2 atmosphere. The impregnation increased the decomposition rate of the co-pyrolysis by weakening the bond energy of fatty side chains and bridge bonds, its catalytic and secondary products, and its bio-oil yield by 66.19%. Its bio-oils mainly contained olefins, aromatic structural substances, and alcohols. The immersion of K2CO3 improved the aromaticity of the co-pyrolytic biochars and reduced the contact between K and Si which made it convenient for Mg to react with SiO2 to form magnesium-silicate. The co-pyrolytic biochar surfaces mainly included -OH, -CH2, C=C, and Si-O-Si. The main phases in the co-pyrolytic ash included Ca5(PO4)3(OH), Al2O3, and magnesium-silicate.
科研通智能强力驱动
Strongly Powered by AbleSci AI