Constructing high-toughness polyimide binder with robust polarity and ion-conductive mechanisms ensuring long-term operational stability of silicon-based anodes

材料科学 阳极 聚酰亚胺 极性(国际关系) 导电体 韧性 复合材料 化学工程 光电子学 化学 电极 工程类 图层(电子) 生物化学 物理化学 细胞
作者
Yongjun Kang,Nanxi Dong,Fangzhou Liu,Daolei Lin,Bingxue Liu,Guofeng Tian,Shengli Qi,Dezhen Wu
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:93: 580-591 被引量:9
标识
DOI:10.1016/j.jechem.2024.02.031
摘要

Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity. However, the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode. Herein, a functionalized high-toughness polyimide (PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride (ODPA) with 4,4′-oxydianiline (ODA), 2,3-diaminobenzoic acid (DABA), and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane (DMS). The combination of rigid benzene rings and flexible oxygen groups (-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness. The plentiful polar carboxyl (-COOH) groups establish robust bonding strength. Rapid ionic transport is achieved by incorporating the flexible siloxane segment (Si-O-Si), which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport (9.8×10-10 cm2 s-1 vs. 16×10-10 cm2 s-1). As expected, the SiOx@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g-1. The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode. Meanwhile, the assembled SiOx@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles. The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ASDS完成签到,获得积分10
1秒前
SMINI发布了新的文献求助10
1秒前
1秒前
zy发布了新的文献求助10
2秒前
VISIN完成签到,获得积分10
2秒前
耳机单蹦发布了新的文献求助30
2秒前
CAOHOU应助徐合川采纳,获得10
4秒前
4秒前
十二发布了新的文献求助10
4秒前
香蕉觅云应助ok12采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
4秒前
胡桃夹子发布了新的文献求助10
4秒前
5秒前
无花果应助阿银采纳,获得10
5秒前
PGCY完成签到 ,获得积分10
5秒前
拓跋半雪完成签到,获得积分10
6秒前
6秒前
刘婷婷发布了新的文献求助10
7秒前
EZ完成签到 ,获得积分10
7秒前
7秒前
7秒前
123发布了新的文献求助10
8秒前
李无敌发布了新的文献求助10
8秒前
MoodMeed完成签到,获得积分10
8秒前
ccc完成签到 ,获得积分10
8秒前
lxl完成签到,获得积分10
9秒前
深情笑南完成签到,获得积分20
9秒前
9秒前
mvp1990应助乐乐采纳,获得10
9秒前
打打应助echo采纳,获得10
10秒前
10秒前
小马甲应助LmyHusband采纳,获得10
11秒前
慕青应助mcqm采纳,获得10
11秒前
11秒前
11秒前
11秒前
33发布了新的文献求助10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062091
求助须知:如何正确求助?哪些是违规求助? 3600785
关于积分的说明 11435265
捐赠科研通 3324099
什么是DOI,文献DOI怎么找? 1827591
邀请新用户注册赠送积分活动 898024
科研通“疑难数据库(出版商)”最低求助积分说明 818877