行波
生物扩散
物理
空格(标点符号)
时空
数学分析
经典力学
机械
数学
计算机科学
量子力学
操作系统
社会学
人口学
人口
作者
Xiongxiong Bao,Wenxian Shen,Zhongwei Shen
摘要
The present paper is concerned with the spatial spreading speeds and traveling wave solutions of cooperative systems in space-time periodic habitats with nonlocal dispersal. It is assumed that the trivial solution \begin{document}${\bf u} = {\bf 0}$\end{document} of such a system is unstable and the system has a stable space-time periodic positive solution \begin{document}${\bf u^*}(t,x)$\end{document} . We first show that in any direction \begin{document}$ξ∈ \mathbb{S}^{N-1}$\end{document} , such a system has a finite spreading speed interval, and under certain condition, the spreading speed interval is a singleton set, and hence, the system has a single spreading speed \begin{document}$c^{*}(ξ)$\end{document} in the direction of \begin{document}$ξ$\end{document} . Next, we show that for any \begin{document}$c>c^{*}(ξ)$\end{document} , there are space-time periodic traveling wave solutions of the form \begin{document}${\bf{u}}(t,x) = {\bf{Φ}}(x-ctξ,t,ctξ)$\end{document} connecting \begin{document}${\bf u^*}$\end{document} and \begin{document}${\bf 0}$\end{document} , and propagating in the direction of \begin{document}$ξ$\end{document} with speed \begin{document}$c$\end{document} , where \begin{document}$Φ(x,t,y)$\end{document} is periodic in \begin{document}$t$\end{document} and \begin{document}$y$\end{document} , and there is no such solution for \begin{document}$c . We also prove the continuity and uniqueness of space-time periodic traveling wave solutions when the reaction term is strictly sub-homogeneous. Finally, we apply the above results to nonlocal monostable equations and two-species competitive systems with nonlocal dispersal and space-time periodicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI