Anti-Noise Muiti-View Feature Selection With Sample Constraints

计算机科学 特征选择 噪音(视频) 样品(材料) 选择(遗传算法) 特征(语言学) 模式识别(心理学) 人工智能 物理 语言学 哲学 图像(数学) 热力学
作者
Jiaye Li,Hang Xu,Hao Yu,Weixin Li,Chengqi Zhang
标识
DOI:10.1109/icdm58522.2023.00035
摘要

The challenge of the dimensional disaster in multi-view data is an ongoing and formidable issue. Current multi-view feature selection algorithms aim to reduce dimensions by learning a feature subset that effectively captures the overall information of the data, integrating the characteristics from multiple views. However, they often overlook the detrimental impact of noise in the data, which compromises the performance of multi-view feature selection and yields inefficient feature subsets. To address this problem, this paper proposes an anti-noise multi-view feature selection algorithm. In particular, we begin by combining least squares loss and regularization techniques to learn the relationship between the data and labels. Subsequently, we introduce sample constraints, including view weight and sample weight, as well as feature weight factors, into the objective function. This incorporation reduces the significance of noisy samples, thereby enhancing the algorithm's ability to resist noise interference. In comparative evaluations with state-of-the-art algorithms, the proposed algorithm exhibits an average improvement of 4.42% in classification accuracy when applied to publicly available datasets with added noise 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
全一斩完成签到,获得积分10
刚刚
loudach完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
1秒前
王晓蕾发布了新的文献求助10
1秒前
NexusExplorer应助球球采纳,获得30
2秒前
香蕉觅云应助LILI采纳,获得10
2秒前
2秒前
2秒前
无花果应助成就的夏之采纳,获得10
3秒前
周小鱼发布了新的文献求助10
3秒前
joe完成签到,获得积分10
4秒前
科研通AI5应助简单灵凡采纳,获得10
5秒前
5秒前
红涛完成签到,获得积分10
6秒前
锡昱完成签到,获得积分10
6秒前
6秒前
Ton汤发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
yyljc发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
wgy完成签到 ,获得积分20
8秒前
aa完成签到,获得积分10
9秒前
锣大炮发布了新的文献求助10
9秒前
一一一发布了新的文献求助10
10秒前
小北完成签到,获得积分10
10秒前
昀宇完成签到 ,获得积分10
10秒前
10秒前
特独斩完成签到,获得积分10
10秒前
田小姐发布了新的文献求助10
10秒前
科研通AI5应助科研小狗采纳,获得10
11秒前
完美世界应助CMJ采纳,获得10
12秒前
12秒前
YY发布了新的文献求助10
13秒前
aqaqaqa完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838008
求助须知:如何正确求助?哪些是违规求助? 3380253
关于积分的说明 10513110
捐赠科研通 3099862
什么是DOI,文献DOI怎么找? 1707244
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772744