A substructure transfer reinforcement learning method based on metric learning

强化学习 学习迁移 下部结构 计算机科学 公制(单位) 人工智能 钢筋 机器学习 材料科学 工程类 结构工程 复合材料 运营管理
作者
Peihua Chai,Bilian Chen,Yifeng Zeng,Shenbao Yu
出处
期刊:Neurocomputing [Elsevier]
卷期号:598: 128071-128071 被引量:1
标识
DOI:10.1016/j.neucom.2024.128071
摘要

Transfer reinforcement learning has gained significant traction in recent years as a critical research area, focusing on bolstering agents' decision-making prowess by harnessing insights from analogous tasks. The primary transfer learning method involves identifying the appropriate source domains, sharing specific knowledge structures and subsequently transferring the shared knowledge to novel tasks. However, existing transfer methods exhibit a pronounced dependency on high task similarity and an abundance of source data. Consequently, we attempt to formulate a more efficacious approach that optimally exploits the previous learning experiences to direct an agent's exploration as it learns new tasks. Specifically, we introduce a novel transfer learning paradigm rooted within the distance measure in the Markov chain, denoted as Distance Measure Substructure Transfer Reinforcement Learning (DMS-TRL). The core idea involves partitioning the Markov chain into the most basic small Markov units, which contain basic information about the agent's transfer between two states, and then followed by employing a new distance measure technique to find the most similar structure, which is also the most suitable for transfer. Finally, we propose a policy transfer method to transfer knowledge through the Q table from the selected Markov unit to the target task. Through a series of experiments conducted on discrete Gridworld scenarios, we compare our approach with state-of-the-art learning methods. The results clearly illustrate that DMS-TRL can adeptly identify optimal policy in target tasks, exhibiting swifter convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助tanfor采纳,获得10
刚刚
英俊的铭应助直率的雪巧采纳,获得10
1秒前
3秒前
啦啦啦完成签到 ,获得积分10
3秒前
lionel发布了新的文献求助10
4秒前
5秒前
渴望者发布了新的文献求助10
6秒前
6秒前
研友_Z30Kz8完成签到,获得积分10
6秒前
清秀的怀蕊完成签到 ,获得积分10
7秒前
叶十七完成签到,获得积分10
8秒前
8秒前
xiangoak完成签到 ,获得积分10
8秒前
大方万仇完成签到 ,获得积分10
8秒前
ruby发布了新的文献求助10
9秒前
10秒前
lin完成签到,获得积分10
11秒前
11秒前
13秒前
jias发布了新的文献求助10
13秒前
xxx关闭了xxx文献求助
14秒前
15秒前
Choyy发布了新的文献求助10
15秒前
16秒前
16秒前
yu是宇宙的宇完成签到,获得积分10
17秒前
bkagyin应助根系内生菌采纳,获得10
18秒前
tanfor发布了新的文献求助10
18秒前
19秒前
20秒前
北侨发布了新的文献求助10
20秒前
21秒前
24秒前
开心清炎完成签到 ,获得积分10
25秒前
北侨完成签到,获得积分10
26秒前
jias发布了新的文献求助10
26秒前
李健的小迷弟应助Choyy采纳,获得10
27秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160