A substructure transfer reinforcement learning method based on metric learning

强化学习 学习迁移 下部结构 计算机科学 公制(单位) 人工智能 钢筋 机器学习 材料科学 工程类 结构工程 复合材料 运营管理
作者
Peihua Chai,Bilian Chen,Yifeng Zeng,Shenbao Yu
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:598: 128071-128071
标识
DOI:10.1016/j.neucom.2024.128071
摘要

Transfer reinforcement learning has gained significant traction in recent years as a critical research area, focusing on bolstering agents' decision-making prowess by harnessing insights from analogous tasks. The primary transfer learning method involves identifying the appropriate source domains, sharing specific knowledge structures and subsequently transferring the shared knowledge to novel tasks. However, existing transfer methods exhibit a pronounced dependency on high task similarity and an abundance of source data. Consequently, we attempt to formulate a more efficacious approach that optimally exploits the previous learning experiences to direct an agent's exploration as it learns new tasks. Specifically, we introduce a novel transfer learning paradigm rooted within the distance measure in the Markov chain, denoted as Distance Measure Substructure Transfer Reinforcement Learning (DMS-TRL). The core idea involves partitioning the Markov chain into the most basic small Markov units, which contain basic information about the agent's transfer between two states, and then followed by employing a new distance measure technique to find the most similar structure, which is also the most suitable for transfer. Finally, we propose a policy transfer method to transfer knowledge through the Q table from the selected Markov unit to the target task. Through a series of experiments conducted on discrete Gridworld scenarios, we compare our approach with state-of-the-art learning methods. The results clearly illustrate that DMS-TRL can adeptly identify optimal policy in target tasks, exhibiting swifter convergence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LY完成签到,获得积分10
1秒前
ALLon完成签到 ,获得积分10
2秒前
xiao柒柒柒完成签到,获得积分10
2秒前
日月星完成签到,获得积分10
3秒前
是小雨呀完成签到,获得积分10
4秒前
乐乐乐完成签到,获得积分10
4秒前
qqqyy完成签到,获得积分10
5秒前
从容鞋子完成签到,获得积分10
5秒前
5秒前
俭朴的世界完成签到 ,获得积分10
6秒前
苏钰完成签到,获得积分10
6秒前
大道要熬发布了新的文献求助10
7秒前
洁净的天德完成签到,获得积分10
8秒前
cp3xzh完成签到,获得积分10
9秒前
梁帅琦完成签到,获得积分20
9秒前
苗条的小蜜蜂完成签到 ,获得积分10
10秒前
517完成签到 ,获得积分10
10秒前
Mr.Su完成签到 ,获得积分10
11秒前
梁帅琦发布了新的文献求助10
12秒前
cdercder应助尛瞐慶成采纳,获得10
12秒前
4645完成签到,获得积分10
13秒前
凝视应助Sylvia采纳,获得10
14秒前
怡然猎豹完成签到,获得积分10
15秒前
烯灯完成签到,获得积分10
16秒前
hhm完成签到,获得积分10
16秒前
潜山耕之完成签到,获得积分10
16秒前
宇文青寒完成签到,获得积分10
16秒前
17秒前
Azhou完成签到,获得积分10
18秒前
xian完成签到,获得积分10
18秒前
耸耸完成签到 ,获得积分10
19秒前
666完成签到,获得积分10
19秒前
具体问题具体分析完成签到,获得积分10
20秒前
拾石子完成签到 ,获得积分10
20秒前
wangjq完成签到,获得积分10
21秒前
欲望被鬼完成签到,获得积分10
21秒前
Who1990完成签到,获得积分10
21秒前
tiankong完成签到,获得积分10
22秒前
十三发布了新的文献求助10
22秒前
清茶旧友完成签到,获得积分10
23秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827399
求助须知:如何正确求助?哪些是违规求助? 3369731
关于积分的说明 10457038
捐赠科研通 3089413
什么是DOI,文献DOI怎么找? 1699854
邀请新用户注册赠送积分活动 817542
科研通“疑难数据库(出版商)”最低求助积分说明 770253