直方图
核密度估计
蒙特卡罗方法
平滑的
概率逻辑
核(代数)
概率密度函数
计算机科学
统计
数学
人工智能
组合数学
图像(数学)
估计员
作者
D. F. Socie,MA Pompetzki
出处
期刊:Journal of Astm International
[ASTM International]
日期:2004-01-01
卷期号:1 (2): 11561-11561
被引量:28
摘要
This paper describes a methodology for statistically extrapolating a single measured service loading history to the expected long-term service usage spectra. The measured time history first is processed into a rainflow counted histogram. Nonparametric kernel smoothing techniques are employed to convert the rainflow histogram of cycles into a probability density histogram. Once the probability density histogram is obtained, Monte Carlo methods are used to produce a rainflow histogram of any desired number of cycles. A new loading history then is reconstructed from the expected rainflow histogram, which can be combined with a probabilistic fatigue analysis to obtain an estimate of the durability of a structure. Obtaining an estimate of the loading spectra for a ground vehicle is difficult because there are many users, each with different service usage. The extrapolating methodology is extended to combine data from several users to obtain loading spectra that represent more severe users in the population.
科研通智能强力驱动
Strongly Powered by AbleSci AI