Generative Joint Source-Channel Coding for Semantic Image Transmission

计算机科学 图像质量 人工智能 编码器 模式识别(心理学) 算法 图像(数学) 操作系统
作者
Ecenaz Erdemir,Tze-Yang Tung,Pier Luigi Dragotti,Denız Gündüz
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2645-2657 被引量:97
标识
DOI:10.1109/jsac.2023.3288243
摘要

Recent works have shown that joint source-channel coding (JSCC) schemes using deep neural networks (DNNs), called DeepJSCC, provide promising results in wireless image transmission. However, these methods mostly focus on the distortion of the reconstructed signals with respect to the input image, rather than their perception by humans. However, focusing on traditional distortion metrics alone does not necessarily result in high perceptual quality, especially in extreme physical conditions, such as very low bandwidth compression ratio (BCR) and low signal-to-noise ratio (SNR) regimes. In this work, we propose two novel JSCC schemes that leverage the perceptual quality of deep generative models (DGMs) for wireless image transmission, namely InverseJSCC and GenerativeJSCC. While the former is an inverse problem approach to DeepJSCC, the latter is an end-to-end optimized JSCC scheme. In both, we optimize a weighted sum of mean squared error (MSE) and learned perceptual image patch similarity (LPIPS) losses, which capture more semantic similarities than other distortion metrics. InverseJSCC performs denoising on the distorted reconstructions of a DeepJSCC model by solving an inverse optimization problem using the pre-trained style-based generative adversarial network (StyleGAN). Our simulation results show that InverseJSCC significantly improves the state-of-the-art DeepJSCC in terms of perceptual quality in edge cases. In GenerativeJSCC, we carry out end-to-end training of an encoder and a StyleGAN-based decoder, and show that GenerativeJSCC significantly outperforms DeepJSCC both in terms of distortion and perceptual quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ChenYX发布了新的文献求助10
1秒前
安红豆发布了新的文献求助10
1秒前
番茄鱼完成签到 ,获得积分10
1秒前
怕孤单的奇异果完成签到,获得积分10
1秒前
小马甲应助小孙失策了采纳,获得10
3秒前
3秒前
无花果应助等待的谷波采纳,获得10
3秒前
qimingran发布了新的文献求助10
4秒前
自由行走的花完成签到,获得积分10
4秒前
panda完成签到 ,获得积分10
4秒前
百里发布了新的文献求助10
5秒前
badada完成签到 ,获得积分10
6秒前
6秒前
FFF发布了新的文献求助10
7秒前
冲冲冲完成签到,获得积分10
8秒前
Amosummer发布了新的文献求助10
8秒前
CipherSage应助zy采纳,获得10
9秒前
烟花应助范范采纳,获得10
9秒前
从容的天空完成签到,获得积分10
10秒前
10秒前
10秒前
Orange应助weddcf采纳,获得10
10秒前
aaaaa完成签到 ,获得积分20
10秒前
11秒前
HYLynn完成签到,获得积分10
11秒前
12秒前
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
高高远山完成签到,获得积分10
15秒前
张汉三发布了新的文献求助10
15秒前
研友_P85D6Z完成签到,获得积分10
15秒前
15秒前
LOTUS发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297