Integrated eco-driving automation of intelligent vehicles in multi-lane scenario via model-accelerated reinforcement learning

强化学习 计算机科学 障碍物 自动化 控制(管理) 避障 功能(生物学) 能量(信号处理) 模拟 人工智能 工程类 机器人 进化生物学 机械工程 生物 统计 数学 法学 移动机器人 政治学
作者
Ziqing Gu,Yuming Yin,Shengbo Eben Li,Jingliang Duan,Fawang Zhang,Sifa Zheng,Ruigang Yang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:144: 103863-103863 被引量:14
标识
DOI:10.1016/j.trc.2022.103863
摘要

The development of intelligent driving technologies is expected to have the potential in energy economics. Some reported studies mainly focused on the economical driving performance in cruising, following, or ramping scenarios, where longitudinal control is primarily considered. The impact of lateral decisions on economical performance is rarely discussed, especially in traffic flows. In the multi-lane scenario, the upper decision-making module could output reasonable behavior selections to avoid the limitation of single longitudinal control and further enhance the energy-saving potential in traffic flows, such as the appropriate lane-keeping or lane-changing proposal. Furthermore, designing comprehensive rules to coordinate diverse driving goals with separated decision-making and control modules is challenging. Therefore, this paper proposes an integrated decision and control framework for economical driving in the multi-lane scenario, based on the actor–critic reinforcement learning method. The proposed integrated framework contains two function layers: a static-evaluating layer and a dynamic-tracking layer. The former, i.e., the critic network, considers static information, evaluates potentially feasible lanes, and selects an advantage lane as the lane-changing proposal. The latter, i.e., the actor network, obtains dynamic traffic information and solves a constrained control problem. Finally, the solution aims to achieve obstacle avoidance and economical and stable tracking to the proposed advantage lane as far as possible. Furthermore, a model-accelerated soft actor–critic (MSAC) algorithm is developed to simultaneously solve the integrated decision and control problem. Simulation results show that the proposed learning-based integrated method could achieve economical driving and significantly outperform baselines in accumulated performance, energy efficiency, and driving comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研野狗完成签到 ,获得积分10
1秒前
快乐秋白完成签到 ,获得积分10
1秒前
lucky珠完成签到 ,获得积分10
4秒前
从心随缘完成签到 ,获得积分10
7秒前
7秒前
9秒前
9秒前
蜡笔小新完成签到,获得积分10
10秒前
浮尘完成签到 ,获得积分0
12秒前
腰果虾仁完成签到 ,获得积分10
13秒前
wezb完成签到 ,获得积分10
13秒前
ly完成签到,获得积分10
14秒前
dd36完成签到,获得积分10
15秒前
在水一方应助lwg采纳,获得200
18秒前
明眸完成签到 ,获得积分10
20秒前
21秒前
胡楠完成签到,获得积分10
24秒前
001完成签到,获得积分10
29秒前
慕青应助ycd采纳,获得10
31秒前
郭星星完成签到,获得积分10
33秒前
msuyue完成签到,获得积分10
34秒前
xwx完成签到,获得积分10
34秒前
我想静静完成签到 ,获得积分10
35秒前
高贵的晓筠完成签到 ,获得积分10
39秒前
脸小呆呆发布了新的文献求助10
40秒前
40秒前
拾壹完成签到,获得积分10
41秒前
YifanWang应助一个小胖子采纳,获得10
41秒前
宋泽艺完成签到 ,获得积分10
41秒前
violetlishu完成签到 ,获得积分10
41秒前
42秒前
淡然智宸完成签到,获得积分10
42秒前
能干觅夏完成签到 ,获得积分10
45秒前
Echoheart完成签到,获得积分10
48秒前
xiaotudou95完成签到 ,获得积分10
48秒前
惜曦完成签到 ,获得积分10
50秒前
小纪完成签到 ,获得积分10
54秒前
纯情的无色完成签到 ,获得积分10
55秒前
一个小胖子完成签到,获得积分10
58秒前
陶醉的翠霜完成签到 ,获得积分10
59秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340681
关于积分的说明 10301038
捐赠科研通 3057231
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626