Image segmentation using Vision Transformer for tunnel defect assessment

人工智能 计算机视觉 分割 变压器 计算机科学 图像分割 工程类 电气工程 电压
作者
Shaojie Qin,Taiyue Qi,Tang Deng,Xiaodong Huang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (21): 3243-3268 被引量:11
标识
DOI:10.1111/mice.13181
摘要

Abstract Existing tunnel detection methods include crack and water‐leakage segmentation networks. However, if the automated detection algorithm cannot process all defect cases, manual detection is required to eliminate potential risks. The existing intelligent detection methods lack a universal method that can accurately segment all types of defects, particularly when multiple defects are superimposed. To address this issue, a defect segmentation model is proposed based on Vision Transformer (ViT), which is completely different from the network structure of a convolutional neural network. The model proposes an adapter and a decoding head to improve the training effect of the transformer encoder, allowing it to be fitted to small‐scale datasets. In post‐processing, a method is proposed to quantify the threat level for the defects, with the aim of outputting qualitative results that simulate human observation. The model showed impressive results on a real‐world dataset containing 11,781 defect images collected from a real subway tunnel. The visualizing results proved that this method is effective and has uniform criteria for single, multiple, and comprehensive defects. Moreover, the tests proved that the proposed model has a significant advantage in the case of multiple‐defect superposition, and it achieved 93.77%, 88.36%, and 92.93% for mean accuracy (Acc), mean intersection over union, and mean F1‐score, respectively. With similar training parameters, the Acc of the proposed method is improved by more than 10% over the DeepLabv3+, Mask R‐convolutional neural network, and UPerNet‐R50 models and by more than 5% over the Swin Transformer and ViT‐Adapter. This study implemented a general method that can process all defect cases and output the threat evaluation results, thereby making more intelligent tunnel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
jzq发布了新的文献求助10
1秒前
6666发布了新的文献求助20
1秒前
深情安青应助Mr咸蛋黄采纳,获得10
1秒前
Larry1226发布了新的文献求助10
1秒前
1秒前
坦率耳机应助飘逸的期待采纳,获得10
2秒前
NexusExplorer应助奋斗的松思采纳,获得10
2秒前
偷菜帅哥完成签到,获得积分10
2秒前
2秒前
xvan发布了新的文献求助10
2秒前
水水完成签到,获得积分10
2秒前
2秒前
上官若男应助刘欣采纳,获得10
2秒前
3秒前
3秒前
英姑应助辛勤采柳采纳,获得10
3秒前
Jupiter完成签到,获得积分10
4秒前
hhhg应助struggle采纳,获得10
4秒前
科研通AI6应助今晚吃什么采纳,获得10
4秒前
4秒前
鱼鱼子发布了新的文献求助10
4秒前
落寞代亦完成签到,获得积分10
5秒前
5秒前
自信大白菜真实的钥匙完成签到,获得积分10
5秒前
Ava应助清风明月采纳,获得10
5秒前
www完成签到,获得积分10
5秒前
聪明海豚发布了新的文献求助30
6秒前
6秒前
6秒前
大个应助持卿采纳,获得10
6秒前
皮蛋瘦肉粥完成签到,获得积分10
7秒前
7秒前
Hello应助不不同学采纳,获得30
7秒前
7秒前
huhdcid发布了新的文献求助10
7秒前
疑问师完成签到,获得积分10
8秒前
Leeyouyou发布了新的文献求助10
8秒前
陈杰完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429202
求助须知:如何正确求助?哪些是违规求助? 4542725
关于积分的说明 14182442
捐赠科研通 4460595
什么是DOI,文献DOI怎么找? 2445804
邀请新用户注册赠送积分活动 1436972
关于科研通互助平台的介绍 1414137