亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image segmentation using Vision Transformer for tunnel defect assessment

人工智能 计算机视觉 分割 变压器 计算机科学 图像分割 工程类 电气工程 电压
作者
Shaojie Qin,Taiyue Qi,Tang Deng,Xiaodong Huang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (21): 3243-3268 被引量:11
标识
DOI:10.1111/mice.13181
摘要

Abstract Existing tunnel detection methods include crack and water‐leakage segmentation networks. However, if the automated detection algorithm cannot process all defect cases, manual detection is required to eliminate potential risks. The existing intelligent detection methods lack a universal method that can accurately segment all types of defects, particularly when multiple defects are superimposed. To address this issue, a defect segmentation model is proposed based on Vision Transformer (ViT), which is completely different from the network structure of a convolutional neural network. The model proposes an adapter and a decoding head to improve the training effect of the transformer encoder, allowing it to be fitted to small‐scale datasets. In post‐processing, a method is proposed to quantify the threat level for the defects, with the aim of outputting qualitative results that simulate human observation. The model showed impressive results on a real‐world dataset containing 11,781 defect images collected from a real subway tunnel. The visualizing results proved that this method is effective and has uniform criteria for single, multiple, and comprehensive defects. Moreover, the tests proved that the proposed model has a significant advantage in the case of multiple‐defect superposition, and it achieved 93.77%, 88.36%, and 92.93% for mean accuracy (Acc), mean intersection over union, and mean F1‐score, respectively. With similar training parameters, the Acc of the proposed method is improved by more than 10% over the DeepLabv3+, Mask R‐convolutional neural network, and UPerNet‐R50 models and by more than 5% over the Swin Transformer and ViT‐Adapter. This study implemented a general method that can process all defect cases and output the threat evaluation results, thereby making more intelligent tunnel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
zhj发布了新的文献求助10
30秒前
可爱的函函应助zhj采纳,获得10
34秒前
HuiHui完成签到,获得积分10
1分钟前
sunrase完成签到,获得积分10
1分钟前
2分钟前
残月初升完成签到,获得积分10
2分钟前
诸天真完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
橙子发布了新的文献求助10
4分钟前
4分钟前
cc发布了新的文献求助10
4分钟前
深情安青应助橙子采纳,获得10
4分钟前
4分钟前
龙成阳完成签到,获得积分10
4分钟前
充电宝应助温城采纳,获得10
5分钟前
5分钟前
英姑应助我想吃火锅采纳,获得30
5分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
6分钟前
温城发布了新的文献求助10
6分钟前
6分钟前
zhj发布了新的文献求助10
6分钟前
温城完成签到,获得积分10
6分钟前
sowhat完成签到 ,获得积分10
7分钟前
852应助zhj采纳,获得10
7分钟前
HR_GR完成签到,获得积分10
7分钟前
ZaZa完成签到,获得积分10
7分钟前
搜集达人应助安静依琴采纳,获得10
7分钟前
7分钟前
7分钟前
102完成签到,获得积分10
7分钟前
7分钟前
102发布了新的文献求助10
8分钟前
激动的似狮完成签到,获得积分10
8分钟前
我想吃火锅完成签到,获得积分10
8分钟前
酱豆豆完成签到 ,获得积分10
8分钟前
orixero应助年轻砖头采纳,获得10
9分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360051
捐赠科研通 3068736
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766033