Image segmentation using Vision Transformer for tunnel defect assessment

人工智能 计算机视觉 分割 变压器 计算机科学 图像分割 工程类 电气工程 电压
作者
Shaojie Qin,Taiyue Qi,Tang Deng,Xiaodong Huang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (21): 3243-3268 被引量:11
标识
DOI:10.1111/mice.13181
摘要

Abstract Existing tunnel detection methods include crack and water‐leakage segmentation networks. However, if the automated detection algorithm cannot process all defect cases, manual detection is required to eliminate potential risks. The existing intelligent detection methods lack a universal method that can accurately segment all types of defects, particularly when multiple defects are superimposed. To address this issue, a defect segmentation model is proposed based on Vision Transformer (ViT), which is completely different from the network structure of a convolutional neural network. The model proposes an adapter and a decoding head to improve the training effect of the transformer encoder, allowing it to be fitted to small‐scale datasets. In post‐processing, a method is proposed to quantify the threat level for the defects, with the aim of outputting qualitative results that simulate human observation. The model showed impressive results on a real‐world dataset containing 11,781 defect images collected from a real subway tunnel. The visualizing results proved that this method is effective and has uniform criteria for single, multiple, and comprehensive defects. Moreover, the tests proved that the proposed model has a significant advantage in the case of multiple‐defect superposition, and it achieved 93.77%, 88.36%, and 92.93% for mean accuracy (Acc), mean intersection over union, and mean F1‐score, respectively. With similar training parameters, the Acc of the proposed method is improved by more than 10% over the DeepLabv3+, Mask R‐convolutional neural network, and UPerNet‐R50 models and by more than 5% over the Swin Transformer and ViT‐Adapter. This study implemented a general method that can process all defect cases and output the threat evaluation results, thereby making more intelligent tunnel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MR_芝欧完成签到,获得积分10
刚刚
刚刚
刚刚
LY发布了新的文献求助10
1秒前
里埃尔塞因斯完成签到 ,获得积分10
1秒前
1秒前
2秒前
将来将去应助易达采纳,获得10
2秒前
CAOHOU应助这次会赢吗采纳,获得10
3秒前
3秒前
查查发布了新的文献求助10
4秒前
willa完成签到 ,获得积分10
4秒前
Lucas应助hhhhhh采纳,获得10
4秒前
机灵的雪糕完成签到,获得积分10
4秒前
4秒前
打打应助Kaysen92采纳,获得10
4秒前
lalala发布了新的文献求助10
5秒前
隐形曼青应助古哥采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
研友_VZG7GZ应助kingdomjust采纳,获得10
8秒前
英俊白莲发布了新的文献求助10
8秒前
隐形曼青应助健壮聪展采纳,获得10
8秒前
淡然水绿完成签到,获得积分10
8秒前
褪山海发布了新的文献求助10
8秒前
gaga应助无限的凡波采纳,获得10
8秒前
mjx完成签到,获得积分10
9秒前
万能图书馆应助quan采纳,获得10
11秒前
11秒前
11秒前
Ksa发布了新的文献求助10
13秒前
wanci应助zlenetr采纳,获得10
13秒前
将来将去应助复活采纳,获得10
13秒前
14秒前
lalala完成签到,获得积分20
14秒前
JY完成签到,获得积分20
14秒前
褪山海完成签到,获得积分10
14秒前
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 510
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4102751
求助须知:如何正确求助?哪些是违规求助? 3640470
关于积分的说明 11536624
捐赠科研通 3349475
什么是DOI,文献DOI怎么找? 1840384
邀请新用户注册赠送积分活动 907376
科研通“疑难数据库(出版商)”最低求助积分说明 824522