GeoScale: Microservice Autoscaling With Cost Budget in Geo-Distributed Edge Clouds

计算机科学 云计算 GSM演进的增强数据速率 分布式计算 操作系统 电信
作者
Ke Cheng,Sheng Zhang,Meizhao Liu,Yingcheng Gu,Wei Liu,Huanyu Cheng,Kai Liu,Yu Song,Xiaohang Shi,Andong Zhu,Tang Lei
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (4): 646-662 被引量:4
标识
DOI:10.1109/tpds.2024.3366533
摘要

Deploying microservice instances in geo-distributed edge clouds which are located at the network edge and in proximity to end-users can provide on-site processing, thereby improving the quality of service (QoS). To accommodate the time-varying request arrival rate of each edge cloud, the deployment scheme of microservice instances is dynamically adapted, which is called microservice autoscaling. However, existing studies on microservice autoscaling at the edge either only optimize the QoS without considering the cost of deploying microservice instances or simply focus on the cost per individual timeslot, and thus always severely violate the long-term budget constraint. To solve this problem, in this article, we propose GeoScale, a novel method that aims to optimize the average request response time under the long-term cost budget constraint. GeoScale first utilizes the Lyapunov optimization framework to decompose the long-term optimization problem into a series of per-timeslot sub-problems and then applies a signomial geometric programming (SGP)-based algorithm to obtain a near-optimal solution to each NP-hard sub-problem. Through extensive trace-driven experiments, we validate the superiority of GeoScale. The experimental results show that compared with existing strategies and designed baselines, GeoScale can improve QoS by reducing the average request response time up to 87.8% while significantly mitigating the violation of the long-term cost budget constraint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
奋斗蚂蚁发布了新的文献求助10
刚刚
wennyzh完成签到,获得积分10
刚刚
慕青应助奉天BB机采纳,获得10
1秒前
沉静的靖巧完成签到,获得积分20
1秒前
希望天下0贩的0应助a0104104采纳,获得10
1秒前
莫言发布了新的文献求助10
1秒前
可燃冰完成签到,获得积分10
1秒前
是盐的学术号吖完成签到 ,获得积分10
1秒前
jing发布了新的文献求助10
2秒前
daytoy完成签到 ,获得积分10
2秒前
嘻嘻哈哈应助liuguanfeng采纳,获得10
2秒前
2秒前
ping完成签到 ,获得积分10
2秒前
2秒前
章建清完成签到 ,获得积分10
2秒前
希望天下0贩的0应助Alma采纳,获得10
2秒前
宋宋完成签到,获得积分10
3秒前
岳宁宁发布了新的文献求助10
3秒前
4秒前
Zz完成签到,获得积分10
4秒前
笑声像鸭子叫完成签到 ,获得积分10
4秒前
4秒前
丘比特应助莫言采纳,获得10
5秒前
Jasper应助东方诩采纳,获得10
5秒前
ZiZi发布了新的文献求助10
5秒前
黄pp发布了新的文献求助10
6秒前
杰克发布了新的文献求助10
6秒前
Nizarn发布了新的文献求助10
7秒前
8秒前
敛茫完成签到 ,获得积分10
8秒前
8秒前
充电宝应助活力安阳采纳,获得10
9秒前
炳楷完成签到,获得积分10
9秒前
疲惫的派大星完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
在水一方应助简单平蓝采纳,获得10
10秒前
深情安青应助辰枫吖采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477903
求助须知:如何正确求助?哪些是违规求助? 4579712
关于积分的说明 14370069
捐赠科研通 4507919
什么是DOI,文献DOI怎么找? 2470291
邀请新用户注册赠送积分活动 1457179
关于科研通互助平台的介绍 1431135