Open Set Recognition With Incremental Learning for SAR Target Classification

人工智能 计算机科学 自动目标识别 分类器(UML) 模式识别(心理学) 合成孔径雷达 上下文图像分类 自编码 目标捕获 一级分类 机器学习 深度学习 图像(数学)
作者
Xiaojie Ma,Kefeng Ji,Sijia Feng,Linbin Zhang,Boli Xiong,Gangyao Kuang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:31
标识
DOI:10.1109/tgrs.2023.3283423
摘要

SAR target classification is an important application in SAR image interpretation. In practical applications, the battlefield is open and dynamic, and the SAR target classification model often encounters the targets of unknown classes. However, most of the existing SAR target classification methods follow the close-set assumption. It makes them only classify several fixed classes of targets and can't deal with the targets from unknown classes. To this end, this paper proposes a novel SAR target classification method. This method can not only classify the targets from known classes and search targets from unknown classes but also incrementally update the classification model with these unknown class targets. Specifically, an autoencoder improved by MS-SSIM (multi-scale structural similarity) loss is utilized to extract targets' features, and it can better utilize the structural information in SAR images. Next, the classifier based on EVT (Extreme Value Theorem) is established, which can classify the known class targets and search the unknown class targets. Then, we perform improved model reduction on the established classifier. This operation could speed up the model and prepare for incremental learning. Finally, after manually labeling those unknown class targets, the classifier is updated with these data in incremental form. Experimental results on the MSTAR (Moving and Stationary Target Automatic Recognition) dataset indicate that, compared with the state-of-the-art methods, our proposed method has better performance in open set recognition and incremental learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任性凝蝶完成签到,获得积分10
1秒前
sun发布了新的文献求助10
2秒前
小蘑菇应助唠叨的耷采纳,获得10
2秒前
奋斗蚂蚁发布了新的文献求助10
2秒前
nyddyy完成签到,获得积分10
2秒前
3秒前
www完成签到,获得积分10
3秒前
3秒前
苏洋完成签到,获得积分10
3秒前
迷路的绿藻头完成签到,获得积分10
3秒前
桐桐应助Jake采纳,获得10
3秒前
3秒前
liuuuuuu完成签到,获得积分10
4秒前
大模型应助赵珂采纳,获得10
4秒前
胡咔咔发布了新的文献求助10
4秒前
王丽雅发布了新的文献求助10
5秒前
cdercder完成签到,获得积分0
5秒前
lshl2000完成签到,获得积分10
6秒前
芙芙官发布了新的文献求助10
6秒前
金铭发布了新的文献求助30
6秒前
椰奶完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
英俊的铭应助科研白菜采纳,获得10
9秒前
wuzhizhongbin完成签到,获得积分10
9秒前
ysxl发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
QIUQIU0916完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
人间风发布了新的文献求助10
11秒前
CipherSage应助1111111111111采纳,获得10
11秒前
子车茗应助Lucas采纳,获得20
12秒前
Leo发布了新的文献求助10
12秒前
Easton丶完成签到,获得积分10
12秒前
houyoufang完成签到 ,获得积分10
13秒前
完美世界应助yoyo采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066