Efficient Deployment of Peanut Leaf Disease Detection Models on Edge AI Devices

软件部署 生物 农学 农林复合经营 计算机科学 操作系统
作者
Zhihua Lv,Shangbin Yang,S.Y. Ma,Qiang Wang,Junwei Sun,Linlin Du,Jiaqi Han,Yufeng Guo,Hui Zhang
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:15 (3): 332-332 被引量:1
标识
DOI:10.3390/agriculture15030332
摘要

The intelligent transformation of crop leaf disease detection has driven the use of deep neural network algorithms to develop more accurate disease detection models. In resource-constrained environments, the deployment of crop leaf disease detection models on the cloud introduces challenges such as communication latency and privacy concerns. Edge AI devices offer lower communication latency and enhanced scalability. To achieve the efficient deployment of crop leaf disease detection models on edge AI devices, a dataset of 700 images depicting peanut leaf spot, scorch spot, and rust diseases was collected. The YOLOX-Tiny network was utilized to conduct deployment experiments with the peanut leaf disease detection model on the Jetson Nano B01. The experiments initially focused on three aspects of efficient deployment optimization: the fusion of rectified linear unit (ReLU) and convolution operations, the integration of Efficient Non-Maximum Suppression for TensorRT (EfficientNMS_TRT) to accelerate post-processing within the TensorRT model, and the conversion of model formats from number of samples, channels, height, width (NCHW) to number of samples, height, width, and channels (NHWC) in the TensorFlow Lite model. Additionally, experiments were conducted to compare the memory usage, power consumption, and inference latency between the two inference frameworks, as well as to evaluate the real-time video detection performance using DeepStream. The results demonstrate that the fusion of ReLU activation functions with convolution operations reduced the inference latency by 55.5% compared to the use of the Sigmoid linear unit (SiLU) activation alone. In the TensorRT model, the integration of the EfficientNMS_TRT module accelerated post-processing, leading to a reduction in the inference latency of 19.6% and an increase in the frames per second (FPS) of 20.4%. In the TensorFlow Lite model, conversion to the NHWC format decreased the model conversion time by 88.7% and reduced the inference latency by 32.3%. These three efficient deployment optimization methods effectively decreased the inference latency and enhanced the inference efficiency. Moreover, a comparison between the two frameworks revealed that TensorFlow Lite exhibited memory usage reductions of 15% to 20% and power consumption decreases of 15% to 25% compared to TensorRT. Additionally, TensorRT achieved inference latency reductions of 53.2% to 55.2% relative to TensorFlow Lite. Consequently, TensorRT is deemed suitable for tasks requiring strong real-time performance and low latency, whereas TensorFlow Lite is more appropriate for scenarios with constrained memory and power resources. Additionally, the integration of DeepStream and EfficientNMS_TRT was found to optimize memory and power utilization, thereby enhancing the speed of real-time video detection. A detection rate of 28.7 FPS was achieved at a resolution of 1280 × 720. These experiments validate the feasibility and advantages of deploying crop leaf disease detection models on edge AI devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥完成签到,获得积分10
刚刚
1秒前
尔风发布了新的文献求助10
1秒前
负数完成签到,获得积分10
1秒前
Hellowa完成签到,获得积分10
1秒前
xing完成签到,获得积分10
1秒前
WMT发布了新的文献求助10
1秒前
Kelly完成签到,获得积分10
2秒前
JamesPei应助刘白告采纳,获得10
2秒前
3秒前
魏一一完成签到,获得积分10
4秒前
社畜甲发布了新的文献求助10
5秒前
5秒前
谁家的花花完成签到,获得积分10
5秒前
拜拜拜仁完成签到,获得积分10
6秒前
沉静安荷完成签到,获得积分10
6秒前
6秒前
yaoyh_gc完成签到,获得积分10
7秒前
xfyxxh完成签到,获得积分10
7秒前
linyu发布了新的文献求助10
7秒前
1no完成签到 ,获得积分10
7秒前
本来离婚就烦完成签到 ,获得积分10
8秒前
聪明摩托完成签到,获得积分10
8秒前
语秋完成签到,获得积分10
9秒前
9秒前
zhenxing发布了新的文献求助10
10秒前
科研通AI5应助mushini采纳,获得10
10秒前
way完成签到,获得积分10
11秒前
李海平发布了新的文献求助30
11秒前
实验耗材完成签到 ,获得积分10
12秒前
核桃应助真实的火车采纳,获得10
12秒前
13秒前
13秒前
songjin111111完成签到,获得积分10
14秒前
忧虑的访梦完成签到,获得积分10
15秒前
Went完成签到,获得积分10
16秒前
afar完成签到 ,获得积分10
16秒前
16秒前
Woo完成签到,获得积分10
16秒前
WRZ完成签到 ,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840989
求助须知:如何正确求助?哪些是违规求助? 3383019
关于积分的说明 10527493
捐赠科研通 3102844
什么是DOI,文献DOI怎么找? 1709042
邀请新用户注册赠送积分活动 822900
科研通“疑难数据库(出版商)”最低求助积分说明 773655