From Multi-Source Virtual to Real: Effective Virtual Data Search for Vehicle Re-Identification

计算机科学 数据挖掘 管道(软件) 鉴定(生物学) 虚拟训练 虚拟现实 集合(抽象数据类型) 机器学习 人工智能 植物 生物 程序设计语言
作者
Zhijing Wan,Xin Xu,Zheng Wang,Z. Wang,Ruimin Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tits.2023.3329118
摘要

Without tedious and time-consuming labeling processes, virtual datasets have recently shown their superiority for vehicle re-identification (re-ID). Existing virtual to real vehicle re-ID methods employ only a single virtual dataset for model training, while datasets from different generative sources are not jointly exploited. Multiple source virtual datasets contain more data diversity that can boost model performance. We thus propose a multi-source virtual to real vehicle re-ID pipeline, where multiple source virtual datasets are used during training. However, the multi-source virtual dataset suffers from more data redundancy than the single virtual dataset, which can affect the training efficiency. Intuitively, it can be mitigated by virtual data search. Unlike a single virtual dataset, a performance gap exists between multiple source virtual datasets, indicating their different contributions to model learning. Accordingly, we propose to split the multi-source virtual dataset into the main training set and the auxiliary training set, and then design the sampling strategy separately. For the main training set, the Consistent Attribute Distribution-FEature distance Trade-off (CAD-FET) strategy is designed to search for representative data. For the auxiliary training set, a cluster-based sampling strategy is further proposed to search for the most diverse subset. Besides, a simple yet effective two-stage training strategy is proposed to utilize these subsets reasonably. Extensive virtual-to-real vehicle re-ID experiments show that our data sampling method can reduce the volume of the multi-source virtual dataset by around 77%/96% and boost the model performance when tested on the VeRi776/VehicleID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yayika完成签到,获得积分10
刚刚
现代山雁完成签到 ,获得积分10
刚刚
SciGPT应助无奈曼云采纳,获得10
1秒前
李爱国应助Glitter采纳,获得10
1秒前
zy完成签到,获得积分10
1秒前
长情绿凝完成签到,获得积分10
1秒前
任世界灯火阑珊完成签到,获得积分10
2秒前
shanshan发布了新的文献求助30
2秒前
huangyanan0120完成签到,获得积分10
2秒前
莫小乔斯发布了新的文献求助30
2秒前
任性的蝴蝶完成签到,获得积分10
2秒前
3秒前
3秒前
FashionBoy应助杨宏章采纳,获得10
4秒前
上官若男应助biopig采纳,获得10
4秒前
会游泳的鱼完成签到,获得积分10
4秒前
Owen应助啦啦啦啦采纳,获得10
5秒前
fiver完成签到,获得积分10
5秒前
5秒前
琪琪的完成签到,获得积分10
5秒前
星辰大海应助shanshan采纳,获得30
6秒前
cwm完成签到,获得积分10
6秒前
6秒前
爱学习的火龙果完成签到,获得积分10
6秒前
捡了小猫名为苍狗完成签到,获得积分10
7秒前
领导范儿应助搬砖人采纳,获得10
7秒前
Cecilia_kou完成签到 ,获得积分10
7秒前
橡皮鱼完成签到,获得积分10
8秒前
陈晓真完成签到,获得积分10
8秒前
一手灵魂完成签到,获得积分10
8秒前
qq完成签到,获得积分10
8秒前
十里桃花不徘徊完成签到,获得积分10
9秒前
9秒前
维特完成签到,获得积分10
9秒前
fiver发布了新的文献求助30
9秒前
9秒前
感动的念双完成签到,获得积分10
10秒前
华花花发布了新的文献求助10
10秒前
龙王使完成签到,获得积分10
10秒前
狡猾的菠萝完成签到 ,获得积分10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837924
求助须知:如何正确求助?哪些是违规求助? 3380044
关于积分的说明 10512173
捐赠科研通 3099680
什么是DOI,文献DOI怎么找? 1707179
邀请新用户注册赠送积分活动 821498
科研通“疑难数据库(出版商)”最低求助积分说明 772667