污水处理
人工神经网络
污染物
废水
环境科学
活性污泥
环境工程
废物管理
工程类
污水污泥处理
水质
水处理
工艺工程
可靠性
质量(理念)
工厂效率
过程(计算)
污水
污水污泥
索引(排版)
作者
Marwah M. Al-Khuzaie,Khairul Nizam Abdul Maulud
出处
期刊:IOP conference series
[IOP Publishing]
日期:2023-05-01
卷期号:1167 (1): 012053-012053
被引量:2
标识
DOI:10.1088/1755-1315/1167/1/012053
摘要
Abstract Water quality, treatment plant management, and environmental concerns all affect how well a sewage treatment plant performs. Due to the high degree of nonlinearity in the plant as well as the nonuniformity and unpredictability of the influent amount, quality parameters, and operational conditions, modelling the sludge capacity index of the activated sludge method in municipal wastewater treatment plants is a challenging mission. To assess the effectiveness of the al-diwaniyah wastewater treatment plant (WWTP) operation and to estimate quality parameters, the study’s first goal is to improve the WWTP by using artificial neural networks (ANNs). Second, increasing the efficiency of the ANNs model to determine the best WWTP procedure. ANN S were created to predict the sludge volume index (SVI) using the al-diwaniyah WWTP operational and influent quality characteristics. The neural network’s best model for predicting SVI consists of an input node with six input variables, a hidden layer with five nodes, and an output layer with one variable, with an R 2 value of 0.965. The outcomes show how effective the right neural network models are at predicting SVI. This is a highly helpful tool that WWTP operators may use in their daily management to improve the effectiveness of the treatment process and the dependability of the WWTP.
科研通智能强力驱动
Strongly Powered by AbleSci AI