Identification of Cancer Stem Cell-related Gene by Single-cell and Machine Learning Predicts Immune Status, Chemotherapy Drug, and Prognosis in Lung Adenocarcinoma

肺癌 腺癌 比例危险模型 肿瘤科 内科学 基因 化疗 生物 癌症干细胞 免疫疗法 癌症 医学 癌症研究 遗传学
作者
Chengcheng Yang,Jinna Zhang,Jintao Xie,Li Lü,Xinyu Zhao,Jinshuang Liu,Xinyan Wang
出处
期刊:Current stem cell research & therapy [Bentham Science Publishers]
卷期号:19 (5): 767-780 被引量:1
标识
DOI:10.2174/1574888x18666230714151746
摘要

Aim: This study aimed to identify the molecular type and prognostic model of lung adenocarcinoma (LUAD) based on cancer stem cell-related genes. Studies have shown that cancer stem cells (CSC) are involved in the development, recurrence, metastasis, and drug resistance of tumors. Method: The clinical information and RNA-seq of LUAD were obtained from the TCGA database. scRNA dataset GSE131907 and 5 GSE datasets were downloaded from the GEO database. Molecular subtypes were identified by ConsensusClusterPlus. A CSC-related prognostic signature was then constructed via univariate Cox and LASSO Cox-regression analysis. Result: A scRNA-seq GSE131907 dataset was employed to obtain 11 cell clusters, among which, 173 differentially expressed genes in CSC were identified. Moreover, the CSC score and mRNAsi were higher in tumor samples. 18 of 173 genes were survival time-associated genes in both the TCGA-LUDA dataset and the GSE dataset. Next, two molecular subtypes (namely, CSC1 and CSC2) were identified based on 18 survival-related CSC genes with distinct immune profiles and noticeably different prognoses as well as differences in the sensitivity of chemotherapy drugs. 8 genes were used to build a prognostic model in the TCGA-LUAD dataset. High-risk patients faced worse survival than those with a low risk. The robust predictive ability of the risk score was validated by the time-dependent ROC curve revealed as well as the GSE dataset. TIDE analysis showed a higher sensitivity of patients in the low group to immunotherapy. Conclusion: This study has revealed the effect of CSC on the heterogeneity of LUAD, and created an 8 genes prognosis model that can be potentially valuable for predicting the prognosis of LUAD and response to immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
scvrl完成签到,获得积分10
刚刚
舒心的平松完成签到,获得积分10
1秒前
1秒前
未命名发布了新的文献求助10
1秒前
纯真的元风完成签到,获得积分10
2秒前
2秒前
烟花应助晨霜采纳,获得30
3秒前
Cash完成签到,获得积分20
3秒前
ergatoid发布了新的文献求助30
4秒前
无花果应助youxiaotong采纳,获得10
5秒前
风的味道发布了新的文献求助10
5秒前
冯好运完成签到,获得积分10
5秒前
XY完成签到,获得积分10
5秒前
5秒前
6秒前
年轻的问兰完成签到,获得积分10
6秒前
6秒前
Jasper应助科研小菜鸡采纳,获得10
6秒前
7秒前
7秒前
7秒前
搜集达人应助夕荀采纳,获得10
7秒前
流浪完成签到,获得积分10
7秒前
pfangjin发布了新的文献求助10
8秒前
8秒前
zyl完成签到 ,获得积分10
9秒前
9秒前
9秒前
科研通AI5应助cwj采纳,获得30
10秒前
permanent发布了新的文献求助10
11秒前
彭于晏应助xiaojin采纳,获得10
11秒前
施天问发布了新的文献求助10
12秒前
12秒前
王王飞发布了新的文献求助10
12秒前
12秒前
12秒前
热心烙完成签到,获得积分10
12秒前
13秒前
可爱的函函应助wangyuchen采纳,获得10
13秒前
xhm发布了新的文献求助10
13秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
P. J. Flory: "Principles of Polymer Chemistry" Cornell Univ. 1953 200
Information Security and Cryptology Inscrypt 2024 Part I 200
The Physical Oceanography of the Arctic Mediterranean Sea 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827847
求助须知:如何正确求助?哪些是违规求助? 3369989
关于积分的说明 10460568
捐赠科研通 3089839
什么是DOI,文献DOI怎么找? 1700055
邀请新用户注册赠送积分活动 817656
科研通“疑难数据库(出版商)”最低求助积分说明 770325