SPRank─A Knowledge-Based Scoring Function for RNA-Ligand Pose Prediction and Virtual Screening

虚拟筛选 核糖核酸 计算机科学 功能(生物学) 自动停靠 对接(动物) 计算生物学 机器学习 生物信息学 化学 生物信息学 生物 药物发现 遗传学 医学 生物化学 护理部 基因
作者
Yuanzhe Zhou,Yangwei Jiang,Shi‐Jie Chen
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.jctc.4c00681
摘要

The growing interest in RNA-targeted drugs underscores the need for computational modeling of interactions between RNA molecules and small compounds. Having a reliable scoring function for RNA-ligand interactions is essential for effective computational drug screening. An ideal scoring function should not only predict the native pose for ligand binding but also rank the affinity of the binding for different ligands. However, existing scoring functions are primarily designed to predict the native binding modes for a given RNA-ligand pair and have not been thoroughly assessed for virtual screening purposes. In this paper, we introduce SPRank, a combination of machine-learning and knowledge-based scoring functions developed through a weighted iterative approach, specifically designed to tackle both binding mode prediction and virtual screening challenges. Our approach incorporates third-party docking software, such as rDock and AutoDock Vina, to sample flexible ligands against an ensemble of RNA structures, capturing the conformational flexibility of both the RNA and the ligand. Through rigorous testing, SPRank demonstrates improved performance compared to the tested scoring functions across four test sets comprising 122, 42, 55, and 71 nucleic acid-ligand complexes. Furthermore, SPRank exhibits improved performance in virtual screening tests targeting the HIV-1 TAR ensemble, which highlights its advantage in drug discovery. These results underscore the advantages of SPRank as a potentially promising tool for the RNA-targeted drug design. The source code of SPRank and the data sets are freely accessible at https://github.com/Vfold-RNA/SPRank.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pikelet发布了新的文献求助20
1秒前
勤劳问玉发布了新的文献求助20
1秒前
1秒前
NexusExplorer应助有魅力沛岚采纳,获得10
1秒前
赘婿应助兴奋之双采纳,获得15
2秒前
2秒前
无花果应助酷酷的水儿采纳,获得10
2秒前
3秒前
充电宝应助阿木木采纳,获得30
3秒前
yangsouth发布了新的文献求助10
4秒前
5秒前
zhou完成签到,获得积分10
6秒前
li发布了新的文献求助10
6秒前
Lyu发布了新的文献求助10
7秒前
kaziwi完成签到,获得积分10
8秒前
8秒前
10秒前
科研通AI5应助钟梓袄采纳,获得10
10秒前
哈哈哈哈发布了新的文献求助10
10秒前
爆米花应助lukescholar采纳,获得10
10秒前
热爱完成签到,获得积分20
10秒前
12秒前
稳重的如波完成签到 ,获得积分10
12秒前
刘一一完成签到,获得积分10
13秒前
田様应助guojingjing采纳,获得10
14秒前
Serendiply完成签到,获得积分10
14秒前
阿拉丁发布了新的文献求助10
14秒前
小竹子发布了新的文献求助10
15秒前
唐帅发布了新的文献求助10
15秒前
16秒前
Koalas应助wpy采纳,获得20
16秒前
Criminology34应助明理的赛凤采纳,获得10
17秒前
彭于晏应助jiangking采纳,获得10
17秒前
17秒前
Flipped完成签到,获得积分10
17秒前
yangsouth完成签到 ,获得积分10
17秒前
TristanGuan发布了新的文献求助10
18秒前
yuan完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183317
求助须知:如何正确求助?哪些是违规求助? 4369689
关于积分的说明 13607154
捐赠科研通 4221493
什么是DOI,文献DOI怎么找? 2315198
邀请新用户注册赠送积分活动 1313946
关于科研通互助平台的介绍 1262737