Split-Dose Administration Enhances Immune Responses Elicited by a mRNA/Lipid Nanoparticle Vaccine Expressing Respiratory Syncytial Virus F Protein

免疫系统 免疫 医学 信使核糖核酸 免疫学 抗体 抗原 病毒学 生物 基因 生物化学
作者
Lauren A. Austin,Jeffrey S. Smith,Debbie D. Nahas,Andrew Danzinger,Susan Secore,Gregory O’Donnell,Scott Radcliffe,Shuai Hu,Jeffrey Perley,Andrew J. Bett,Marian E. Gindy
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:20 (1): 279-289 被引量:4
标识
DOI:10.1021/acs.molpharmaceut.2c00635
摘要

mRNA vaccines have recently received significant attention due to their role in combating the SARS-CoV-2 pandemic. As a platform, mRNA vaccines have been shown to elicit strong humoral and cellular immune responses with acceptable safety profiles for prophylactic use. Despite their potential, industrial challenges have limited realization of the vaccine platform on a global scale. Critical among these challenges are supply chain considerations, including mRNA production, cost of goods, and vaccine frozen-chain distribution. Here, we assess the delivery of lipid nanoparticle-encapsulated mRNA (mRNA/LNP) vaccines using a split-dose immunization regimen as an approach to develop mRNA dose-sparing vaccine regimens with potential to mitigate mRNA supply chain challenges. Our data demonstrate that immunization by a mRNA/LNP vaccine encoding respiratory syncytial virus pre-F (RSV pre-F) over a 9 day period elicits comparable or superior magnitude of antibodies when compared to traditional bolus immunization of the vaccine. The split-dose immunization regimens evaluated in our studies were designed to mimic reported drug or antigen release profiles from microneedle patches, highlighting the potential benefit of pairing mRNA vaccines with patch-based delivery technologies to enable sustained release and solid-state stabilization. Overall, our findings provide a proof of concept to support further investigations into the development of sustained delivery approaches for mRNA/LNP vaccines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
松松包完成签到,获得积分10
1秒前
在水一方应助啦啦啦采纳,获得10
1秒前
研友_LwlRen完成签到 ,获得积分10
1秒前
hope发布了新的文献求助10
1秒前
帅气面包完成签到,获得积分10
1秒前
哭泣冬瓜发布了新的文献求助10
1秒前
酷酷的采珊完成签到,获得积分10
2秒前
2秒前
Moonlight完成签到 ,获得积分10
2秒前
谷粱安卉完成签到 ,获得积分10
3秒前
Bruce Lin完成签到,获得积分10
3秒前
aliu完成签到,获得积分10
3秒前
lcy完成签到,获得积分10
4秒前
HP完成签到,获得积分10
4秒前
汪爷爷完成签到,获得积分10
4秒前
初夏完成签到,获得积分10
5秒前
科研通AI2S应助研友_851KE8采纳,获得10
5秒前
6秒前
goufufu完成签到,获得积分10
6秒前
Yuhaoo完成签到 ,获得积分10
6秒前
落后的瑾瑜完成签到,获得积分10
7秒前
幸运的羔羊完成签到,获得积分10
7秒前
摸鱼校尉完成签到,获得积分0
7秒前
烟花应助哭泣冬瓜采纳,获得10
7秒前
aliu发布了新的文献求助10
8秒前
Seven完成签到,获得积分10
8秒前
大力元霜完成签到,获得积分10
9秒前
千千完成签到,获得积分10
9秒前
10秒前
Akim应助hlc采纳,获得10
11秒前
11秒前
尧九完成签到,获得积分10
12秒前
zier完成签到 ,获得积分10
12秒前
cyy1226发布了新的文献求助10
12秒前
幽默的傲南完成签到,获得积分20
12秒前
Lemuel完成签到,获得积分10
12秒前
SYLH应助木尼木尼采纳,获得10
13秒前
AmyHu完成签到,获得积分10
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Material Weathering 400
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837799
求助须知:如何正确求助?哪些是违规求助? 3379844
关于积分的说明 10511402
捐赠科研通 3099477
什么是DOI,文献DOI怎么找? 1707127
邀请新用户注册赠送积分活动 821432
科研通“疑难数据库(出版商)”最低求助积分说明 772617