Multimodal Video Sentiment Analysis Using Deep Learning Approaches, a Survey

计算机科学 情绪分析 领域(数学) 深度学习 人工智能 分类 话语 背景(考古学) 建筑 利用 模式 任务(项目管理) 自然语言处理 机器学习 艺术 古生物学 社会科学 数学 计算机安全 管理 社会学 纯数学 经济 视觉艺术 生物
作者
Sarah A. Abdu,Ahmed H. Yousef,Ashraf Salem
出处
期刊:Information Fusion [Elsevier BV]
卷期号:76: 204-226 被引量:102
标识
DOI:10.1016/j.inffus.2021.06.003
摘要

Deep learning has emerged as a powerful machine learning technique to employ in multimodal sentiment analysis tasks. In the recent years, many deep learning models and various algorithms have been proposed in the field of multimodal sentiment analysis which urges the need to have survey papers that summarize the recent research trends and directions. This survey paper tackles a comprehensive overview of the latest updates in this field. We present a sophisticated categorization of thirty-five state-of-the-art models, which have recently been proposed in video sentiment analysis field, into eight categories based on the architecture used in each model. The effectiveness and efficiency of these models have been evaluated on the most two widely used datasets in the field, CMU-MOSI and CMU-MOSEI. After carrying out an intensive analysis of the results, we eventually conclude that the most powerful architecture in multimodal sentiment analysis task is the Multi-Modal Multi-Utterance based architecture, which exploits both the information from all modalities and the contextual information from the neighbouring utterances in a video in order to classify the target utterance. This architecture mainly consists of two modules whose order may vary from one model to another. The first module is the Context Extraction Module that is used to model the contextual relationship among the neighbouring utterances in the video and highlight which of the relevant contextual utterances are more important to predict the sentiment of the target one. In most recent models, this module is usually a bidirectional recurrent neural network based module. The second module is an Attention-Based Module that is responsible for fusing the three modalities (text, audio and video) and prioritizing only the important ones. Furthermore, this paper provides a brief summary of the most popular approaches that have been used to extract features from multimodal videos in addition to a comparative analysis between the most popular benchmark datasets in the field. We expect that these findings can help newcomers to have a panoramic view of the entire field and get quick experience from the provided helpful insights. This will guide them easily to the development of more effective models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
stt1011发布了新的文献求助10
1秒前
1秒前
霜降发布了新的文献求助10
2秒前
3秒前
小余同学发布了新的文献求助10
4秒前
4秒前
遗忘发布了新的文献求助10
5秒前
情怀应助老迟到的可兰采纳,获得10
5秒前
明理的小甜瓜完成签到,获得积分10
6秒前
樱满集发布了新的文献求助10
7秒前
不爱读书的完成签到,获得积分10
9秒前
9秒前
才下眉头发布了新的文献求助10
10秒前
小蘑菇应助南北采纳,获得10
11秒前
ZZ发布了新的文献求助30
11秒前
t通应助小余同学采纳,获得10
13秒前
伍六七发布了新的文献求助10
14秒前
汉堡包应助Archer采纳,获得10
15秒前
zy完成签到,获得积分10
15秒前
伏地魔完成签到,获得积分10
15秒前
大个应助小梁采纳,获得10
16秒前
Light完成签到,获得积分20
16秒前
文瑄完成签到 ,获得积分0
16秒前
樱满集完成签到,获得积分20
17秒前
舒服的微笑完成签到,获得积分10
19秒前
所所应助笑点低采纳,获得10
20秒前
小二郎应助既白采纳,获得10
21秒前
21秒前
22秒前
23秒前
LEMONS完成签到 ,获得积分10
23秒前
Lucas应助飘逸的吐司采纳,获得10
23秒前
欢呼平蓝给欢呼平蓝的求助进行了留言
24秒前
感动的红酒完成签到,获得积分10
25秒前
Billy应助Light采纳,获得30
25秒前
25秒前
诗蕊发布了新的文献求助10
27秒前
27秒前
废柴喵应助刻苦青旋采纳,获得10
28秒前
小余同学完成签到,获得积分20
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
中华人民共和国出版史料 6 1954年 500
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814123
求助须知:如何正确求助?哪些是违规求助? 3358369
关于积分的说明 10394045
捐赠科研通 3075673
什么是DOI,文献DOI怎么找? 1689451
邀请新用户注册赠送积分活动 812897
科研通“疑难数据库(出版商)”最低求助积分说明 767404