已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Investigation of a derived adverse outcome pathway (AOP) network for endocrine-mediated perturbations

不良结局途径 计算机科学 工作流程 生物 计算生物学 数据库
作者
Janani Ravichandran,Bagavathy Shanmugam Karthikeyan,Areejit Samal
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:826: 154112-154112 被引量:27
标识
DOI:10.1016/j.scitotenv.2022.154112
摘要

An adverse outcome pathway (AOP) is a compact representation of the available mechanistic information on observed adverse effects upon environmental exposure. Sharing of events across individual AOPs has led to the emergence of AOP networks. Since AOP networks are expected to be functional units of toxicity prediction, there is current interest in their development tailored to specific research question or regulatory problem. To this end, we have developed a detailed workflow to construct an endocrine-relevant AOP (ED-AOP) network based on the existing information available in AOP-Wiki. We propose a cumulative weight of evidence (WoE) score for each ED-AOP based on the WoE scores assigned to key event relationships (KERs) by AOP-Wiki, revealing gaps in AOP development. Connectivity analysis of the ED-AOP network comprising 48 AOPs reveals 7 connected components and 12 isolated AOPs. Subsequently, we apply standard network measures to perform an in-depth analysis of the two largest connected components of the ED-AOP network. Notably, the graph-theoretic analyses led to the identification of important events including points of convergence or divergence in the ED-AOP network. These findings can suggest potential adverse outcomes and facilitate the development of new endpoints or assays for chemical risk assessment. Detailed analysis of the largest component in the ED-AOP network gives insights on the systems-level perturbations caused by endocrine disruption, emergent paths, and stressor-event associations. In sum, the derived ED-AOP network can provide a broader view of the biological events disrupted by endocrine disruption, as well as facilitate better risk assessment of environmental chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘雅彪完成签到 ,获得积分10
2秒前
早睡早起完成签到 ,获得积分10
4秒前
岳小龙完成签到 ,获得积分10
5秒前
小袁发布了新的文献求助10
6秒前
YOYOYO完成签到,获得积分10
8秒前
HeLL0完成签到 ,获得积分10
9秒前
风里有声音完成签到 ,获得积分10
11秒前
小袁完成签到,获得积分20
14秒前
14秒前
Owen应助纯真醉波采纳,获得10
15秒前
小猪猪饲养员完成签到,获得积分10
19秒前
巴豆完成签到 ,获得积分10
21秒前
cacaldon完成签到,获得积分10
23秒前
llt发布了新的文献求助10
24秒前
meow完成签到 ,获得积分10
25秒前
Rory完成签到 ,获得积分10
26秒前
木鱼二丁目完成签到 ,获得积分10
27秒前
28秒前
30秒前
30秒前
30秒前
NexusExplorer应助科研通管家采纳,获得10
30秒前
30秒前
迟青应助科研通管家采纳,获得10
30秒前
半枝桃完成签到 ,获得积分10
30秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
迟青应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
31秒前
31秒前
哈哈完成签到 ,获得积分10
33秒前
纯真醉波发布了新的文献求助10
33秒前
苹果绝施发布了新的文献求助10
33秒前
34秒前
萱棚完成签到 ,获得积分10
35秒前
李佳倩完成签到 ,获得积分10
36秒前
xiuxiu完成签到 ,获得积分10
37秒前
llt完成签到,获得积分10
41秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Towards a spatial history of contemporary art in China 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843144
求助须知:如何正确求助?哪些是违规求助? 3385400
关于积分的说明 10540273
捐赠科研通 3105957
什么是DOI,文献DOI怎么找? 1710791
邀请新用户注册赠送积分活动 823751
科研通“疑难数据库(出版商)”最低求助积分说明 774264