Is Investment in Data Analytics Always Profitable? The Case of Third‐Party‐Online‐Promotion Marketplace

盈利能力指数 佣金 业务 分析 晋升(国际象棋) 利润(经济学) 营销 产业组织 经济 计算机科学 财务 微观经济学 数据科学 政治学 政治 法学
作者
Zhe Zhang,Shivendu Shivendu,Peng Wang
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (7): 2321-2337 被引量:6
标识
DOI:10.1111/poms.13379
摘要

Studies show that merchants are heterogeneous in profitability from offering promotions on third‐party‐online‐promotion marketplaces who often charge a single commission rate. Using a data analytics system, a marketplace can classify merchants according to their heterogeneous characteristics and offer merchant‐type specific commission rates. In this study, we construct a game‐theoretic model consisting a marketplace with two types of merchants who have heterogeneous proportion of consumers who are informed about their offering. The types are merchants’ private information, but the marketplace can invest in data analytics capability to classify merchants as per their types with a probability. We study a signal‐based strategy, where the marketplace invests in data analytics capability and offers a specific commission rate to individual merchant based on the merchant‐type classification and compare it with a single‐rate strategy of offering one commission rate to all merchants. We show that the relative strength and weakness of the signal‐based strategy depend on the merchant type distribution and the investment cost of improving the classification accuracy rate. Interestingly, the marketplace can be better off with the single‐rate strategy when a merchant type dominates the market. Moreover, we show that the signal‐based strategy, can lead to an increase in profit for merchants and an increase in consumer surplus. This is so because the marketplace’s signal‐based strategy has a cascade effect on consumers through the merchant’s optimal discount rate strategy. We conclude by identifying the conditions for a win–win–win situation wherein investment in data analytics capabilities by the marketplace also benefits merchants and consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助英勇的面包采纳,获得10
1秒前
Wendy完成签到,获得积分10
1秒前
1秒前
香蕉初瑶发布了新的文献求助10
2秒前
桐桐应助大气早晨采纳,获得10
3秒前
3秒前
于于于发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
田俊发布了新的文献求助10
6秒前
幻昼556完成签到 ,获得积分10
7秒前
少华完成签到,获得积分10
7秒前
KD完成签到,获得积分10
7秒前
科研小哥完成签到,获得积分20
8秒前
针不戳发布了新的文献求助30
9秒前
左一酱完成签到 ,获得积分10
10秒前
BioGO发布了新的文献求助10
10秒前
KD发布了新的文献求助10
10秒前
11秒前
俭朴朝雪发布了新的文献求助10
12秒前
12秒前
汉堡包应助Latono采纳,获得10
14秒前
香蕉觅云应助无情胡萝卜采纳,获得10
15秒前
正直的广缘完成签到 ,获得积分10
15秒前
852应助香蕉初瑶采纳,获得10
16秒前
16秒前
18秒前
orixero应助kk星采纳,获得10
18秒前
大胆的忆安完成签到 ,获得积分10
19秒前
JamesPei应助羲和之梦采纳,获得10
20秒前
西门子云完成签到,获得积分10
21秒前
Orange应助活力夜白采纳,获得10
21秒前
斯文败类应助日四又采纳,获得10
21秒前
21秒前
tunacan完成签到 ,获得积分10
22秒前
脑洞疼应助流沙采纳,获得10
23秒前
愉快竺应助单于青荷采纳,获得10
23秒前
CoCoco完成签到 ,获得积分10
25秒前
25秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816810
求助须知:如何正确求助?哪些是违规求助? 3360247
关于积分的说明 10407179
捐赠科研通 3078205
什么是DOI,文献DOI怎么找? 1690660
邀请新用户注册赠送积分活动 813983
科研通“疑难数据库(出版商)”最低求助积分说明 767924