Generative Adversarial Networks Assist Missing Data Imputation: A Comprehensive Survey and Evaluation

插补(统计学) 缺少数据 计算机科学 数据挖掘 生成对抗网络 机器学习 人工智能 深度学习
作者
Reza Shahbazian,Sergio Greco
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 88908-88928 被引量:29
标识
DOI:10.1109/access.2023.3306721
摘要

Missing data imputation is a technique to deal with incomplete datasets. Since many models and algorithms cannot be applied to data containing missing values, a pre-processing step needs to be performed to remove incomplete data or to estimate the missing values. This is a well-known problem referred to as the data imputation problem. Several approaches have been designed for data imputation. These algorithms can be divided into two main categories: statistical and machine learning-based algorithms. As machine learning algorithms are optimized, they usually have better performance compared with statistical ones. In this paper, we review the most recent literature related to missing data imputation based on generative adversarial networks (GANs) that have gained tremendous attention in dealing with missing values. We examine the structures of GANs for missing data imputation and discuss the commonly used datasets and metrics for evaluation. We also cover the influence of the missing datatype, the effect of the missing data fraction, and the algorithm-related problems on data imputation performance. We conduct experiments on two publicly available datasets and evaluate the performance of GAIN, a missing data imputation algorithm to that of existing state-of-the-art approaches, demonstrating that the GAN-based algorithm outperforms the others in terms of RMSE and FID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助FF12781采纳,获得10
1秒前
2秒前
科研通AI6应助顺利葵阴采纳,获得10
2秒前
完美世界应助Ashlllley采纳,获得10
3秒前
猫饼大队完成签到,获得积分10
3秒前
mhr驳回了sevenhill应助
3秒前
家有小涵完成签到,获得积分20
3秒前
3秒前
Lucas应助机灵的嘉熙采纳,获得10
4秒前
4秒前
Allein发布了新的文献求助10
5秒前
LLLUO发布了新的文献求助10
6秒前
夏侯乐枫完成签到,获得积分10
6秒前
13633346872完成签到,获得积分10
6秒前
7秒前
潘小辰完成签到,获得积分10
8秒前
9秒前
10秒前
lbq发布了新的文献求助10
10秒前
10秒前
WHM完成签到,获得积分10
12秒前
西西完成签到,获得积分10
13秒前
14秒前
小白完成签到,获得积分10
14秒前
14秒前
微笑发布了新的文献求助10
16秒前
fff完成签到,获得积分10
16秒前
Ashlllley发布了新的文献求助10
16秒前
东东完成签到,获得积分10
17秒前
key完成签到,获得积分10
18秒前
lbq完成签到,获得积分10
19秒前
英俊的铭应助张正采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
云枝发布了新的文献求助10
21秒前
bkagyin应助愉快的依霜采纳,获得10
24秒前
24秒前
Felix0929完成签到,获得积分10
24秒前
25秒前
dianhuaxue发布了新的文献求助30
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430695
求助须知:如何正确求助?哪些是违规求助? 4543745
关于积分的说明 14189043
捐赠科研通 4462220
什么是DOI,文献DOI怎么找? 2446443
邀请新用户注册赠送积分活动 1437819
关于科研通互助平台的介绍 1414530