Deep Learning Hierarchical Representations for Image Steganalysis

计算机科学 隐写分析技术 人工智能 隐写术 卷积神经网络 模式识别(心理学) 残余物 特征提取 深度学习 卷积(计算机科学) 嵌入 人工神经网络 算法
作者
Jian Ye,Jiangqun Ni,Yang Yi
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:12 (11): 2545-2557 被引量:559
标识
DOI:10.1109/tifs.2017.2710946
摘要

Nowadays, the prevailing detectors of steganographic communication in digital images mainly consist of three steps, i.e., residual computation, feature extraction, and binary classification. In this paper, we present an alternative approach to steganalysis of digital images based on convolutional neural network (CNN), which is shown to be able to well replicate and optimize these key steps in a unified framework and learn hierarchical representations directly from raw images. The proposed CNN has a quite different structure from the ones used in conventional computer vision tasks. Rather than a random strategy, the weights in the first layer of the proposed CNN are initialized with the basic high-pass filter set used in the calculation of residual maps in a spatial rich model (SRM), which acts as a regularizer to suppress the image content effectively. To better capture the structure of embedding signals, which usually have extremely low SNR (stego signal to image content), a new activation function called a truncated linear unit is adopted in our CNN model. Finally, we further boost the performance of the proposed CNN-based steganalyzer by incorporating the knowledge of selection channel. Three state-of-the-art steganographic algorithms in spatial domain, e.g., WOW, S-UNIWARD, and HILL, are used to evaluate the effectiveness of our model. Compared to SRM and its selection-channel-aware variant maxSRMd2, our model achieves superior performance across all tested algorithms for a wide variety of payloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喵喵666完成签到,获得积分10
3秒前
xu完成签到 ,获得积分10
5秒前
5秒前
三水完成签到 ,获得积分10
5秒前
赛因斯完成签到,获得积分10
6秒前
打打应助maomao采纳,获得10
6秒前
科研通AI2S应助dengdengdeng采纳,获得30
6秒前
7秒前
七QI完成签到 ,获得积分10
8秒前
佳宝(不可以喝但能吃完成签到,获得积分10
9秒前
星辰大海应助花Cheung采纳,获得10
10秒前
11秒前
苗条辣条发布了新的文献求助10
12秒前
12秒前
桐桐应助huohuo采纳,获得10
12秒前
虚幻谷波完成签到,获得积分10
13秒前
传奇3应助pauline采纳,获得10
14秒前
luoqin发布了新的文献求助10
16秒前
dengdengdeng完成签到,获得积分10
17秒前
轶Y发布了新的文献求助10
17秒前
17秒前
17秒前
18秒前
qweas完成签到,获得积分10
18秒前
18秒前
是龙龙呀完成签到,获得积分10
20秒前
花Cheung发布了新的文献求助10
22秒前
shuang发布了新的文献求助10
22秒前
帮主哥哥应助轶Y采纳,获得30
24秒前
24秒前
24秒前
25秒前
26秒前
27秒前
mangata完成签到,获得积分10
29秒前
huohuo发布了新的文献求助10
29秒前
坤坤探花完成签到,获得积分10
30秒前
小马甲应助IKUN采纳,获得10
31秒前
李健的小迷弟应助炎帝采纳,获得10
31秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Electrolytes, Interfaces and Interphases: Fundamentals and Applications in Batteries 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825630
求助须知:如何正确求助?哪些是违规求助? 3367812
关于积分的说明 10447822
捐赠科研通 3087227
什么是DOI,文献DOI怎么找? 1698538
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973