卟啉
阳离子聚合
化学
鸟嘌呤
化学计量学
G-四倍体
滴定法
配体(生物化学)
寡核苷酸
DNA
结合常数
结合位点
衍生工具(金融)
结晶学
立体化学
光化学
无机化学
核苷酸
受体
物理化学
有机化学
生物化学
经济
金融经济学
基因
作者
Loryn R. Keating,Veronika A. Szalai
出处
期刊:Biochemistry
[American Chemical Society]
日期:2004-11-24
卷期号:43 (50): 15891-15900
被引量:106
摘要
G-quadruplexes are formed by association of DNA strands containing multiple contiguous guanines. The capability of drugs to induce formation of or stabilize G-quadruplexes is an active area of investigation. We report the interactions of CuTMpyP4, the Cu2+ derivative of 5,10,15,20-tetrakis(1-methyl-4-pyridyl)-21H,23H-porphine, with the parallel-stranded G-quadruplexes formed by d(T4G4T4) (1) and d(T4G8T4) (3). Absorption titrations of CuTMpyP4 with (1)4 or (3)4 cause both bathochromicity and hypochromicity of the porphyrin Soret band, with larger changes observed for the longer oligonucleotide. An approximate binding constant for (1)4 and CuTMpyP4 according to the Scatchard model is 5.6 × 106 M-1 in terms of quadruplexes and according to the McGhee−von Hippel model is 1.3 × 106 M-1 in terms of potential binding sites. An approximate binding constant for (3)4 and CuTMpyP4 according to the Scatchard model is 5.2 × 107 M-1 in terms of quadruplexes and in terms of the McGhee−von Hippel model is 2.4 × 106 M-1 in terms of potential binding sites. The site size for CuTMpyP4 and (1)4 is four using the McGhee−von Hippel model. We find a 2:1 binding stoichiometry for CuTMpyP4 and (1)4 and a 3:1 binding stoichiometry for CuTMpyP4 and (3)4 using the method of continuous variation analysis. Induced emission spectra of CuTMpyP4 with (1)4 or (3)4 indicate a mode of binding in which the ligand is protected from the solvent. Electron paramagnetic resonance spectra of CuTMpyP4 with added oligonucleotide show an increase in the Cu−N superhyperfine coupling constant as the length of the oligonucleotide increases. On the basis of these data, we propose that for both (1)4 and (3)4, CuTMpyP4 molecules externally stack at each end of the run of guanines, similar to other planar G-quadruplex ligands. For (3)4, our data are consistent with intercalation of a CuTMpyP4 molecule into the G-quadruplex.
科研通智能强力驱动
Strongly Powered by AbleSci AI