Adaptive Dual-Task Deep Learning for Automated Thyroid Cancer Triaging at Screening US

医学 麦克内马尔试验 放射科 医学物理学 急诊分诊台 人工智能 甲状腺结节 甲状腺 计算机科学 内科学 医疗急救 统计 数学
作者
Shaohong Wu,Ming-De Li,Wenjuan Tong,Yihao Liu,Rui Cui,Jinbo Hu,Mei-Qing Cheng,Weiping Ke,Xin-Xin Lin,Jiayi Lv,Longzhong Liu,Jie Ren,Guangjian Liu,Hong Yang,Wei Wang
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240271
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop an adaptive dual-task deep learning model (ThyNet-S) for detection and classification of thyroid lesions at US screening. Materials and Methods The retrospective study used a multicenter dataset comprising 35008 thyroid US images of 23294 individual examinations (mean age, 40.4 years ± 13.1[SD], 17587 female) from 7 medical centers during January 2009 and December 2021. Of these, 29004 images were used for model development and 6004 images for validation. The model determined cancer risk for each image and automatically triaged images with normal thyroid and benign nodules by dynamically integrating lesion detection through pixel-level feature analysis and lesion classification through deep semantic features analysis. Diagnostic performance of screening assisted by the model (ThyNet-S triaged screening) and traditional screening (radiologists alone) was assessed by comparing sensitivity, specificity, accuracy and AUC using McNemar’s test and Delong test. The influence of ThyNet-S on radiologist workload and clinical decision-making was also assessed. Results ThyNet-S-assisted triaged screening achieved higher AUC than original screening in six senior and six junior radiologists (0.93 versus 0.91, and 0.92 versus 0.88, respectively, all P < .001). The model improved sensitivity for junior radiologists (88.2% versus 86.8%, P <.001). Notably, the model reduced radiologists’ workload by triaging 60.4% of cases as not potentially malignant, which did not require further interpretation. The model simultaneously decreased unnecessary fine needle aspiration rate from 38.7% to 14.9% and 11.5% when used independently or in combination with Thyroid Imaging Reporting and Data System, respectively. Conclusion ThyNet-S improved efficiency of thyroid cancer screening and optimized clinical decision-making. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
里昂义务发布了新的文献求助10
9秒前
xiaofenzi完成签到 ,获得积分10
9秒前
kaokao完成签到,获得积分20
18秒前
Akim应助LLZ采纳,获得10
22秒前
直率新柔完成签到 ,获得积分10
27秒前
baoxiaozhai完成签到 ,获得积分10
28秒前
CJW完成签到 ,获得积分10
30秒前
racill完成签到 ,获得积分10
31秒前
河堤完成签到 ,获得积分10
35秒前
beihaik完成签到 ,获得积分10
36秒前
36秒前
jerry完成签到 ,获得积分10
42秒前
惜曦完成签到 ,获得积分10
48秒前
swordshine完成签到,获得积分10
56秒前
白昼の月完成签到 ,获得积分0
59秒前
微雨若,,完成签到 ,获得积分10
1分钟前
英俊的铭应助莫问今生采纳,获得30
1分钟前
磊磊完成签到,获得积分10
1分钟前
丰富的硬币完成签到 ,获得积分10
1分钟前
xzj完成签到 ,获得积分10
1分钟前
美少叔叔完成签到 ,获得积分10
1分钟前
1分钟前
儒雅巧荷发布了新的文献求助10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
公西翠萱完成签到 ,获得积分10
1分钟前
重要手机完成签到 ,获得积分10
1分钟前
飞快的冰淇淋完成签到 ,获得积分10
1分钟前
赘婿应助儒雅巧荷采纳,获得10
1分钟前
研友_8y2G0L完成签到,获得积分10
1分钟前
一定accept完成签到 ,获得积分10
1分钟前
1分钟前
鳌小饭完成签到 ,获得积分10
1分钟前
鳌小饭完成签到 ,获得积分10
1分钟前
儒雅的蜜粉完成签到,获得积分10
1分钟前
ying818k完成签到 ,获得积分10
1分钟前
zzzzzx发布了新的文献求助10
1分钟前
hyxiaoren应助zzzzzx采纳,获得10
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4800517
求助须知:如何正确求助?哪些是违规求助? 4119250
关于积分的说明 12743320
捐赠科研通 3850699
什么是DOI,文献DOI怎么找? 2121199
邀请新用户注册赠送积分活动 1143456
关于科研通互助平台的介绍 1033082