Adaptive Dual-Task Deep Learning for Automated Thyroid Cancer Triaging at Screening US

医学 麦克内马尔试验 放射科 医学物理学 急诊分诊台 人工智能 甲状腺结节 甲状腺 计算机科学 内科学 医疗急救 统计 数学
作者
Shaohong Wu,Ming-De Li,Wenjuan Tong,Yihao Liu,Rui Cui,Jinbo Hu,Mei-Qing Cheng,Weiping Ke,Xin-Xin Lin,Jiayi Lv,Longzhong Liu,Jie Ren,Guangjian Liu,Hong Yang,Wei Wang
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240271
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop an adaptive dual-task deep learning model (ThyNet-S) for detection and classification of thyroid lesions at US screening. Materials and Methods The retrospective study used a multicenter dataset comprising 35008 thyroid US images of 23294 individual examinations (mean age, 40.4 years ± 13.1[SD], 17587 female) from 7 medical centers during January 2009 and December 2021. Of these, 29004 images were used for model development and 6004 images for validation. The model determined cancer risk for each image and automatically triaged images with normal thyroid and benign nodules by dynamically integrating lesion detection through pixel-level feature analysis and lesion classification through deep semantic features analysis. Diagnostic performance of screening assisted by the model (ThyNet-S triaged screening) and traditional screening (radiologists alone) was assessed by comparing sensitivity, specificity, accuracy and AUC using McNemar’s test and Delong test. The influence of ThyNet-S on radiologist workload and clinical decision-making was also assessed. Results ThyNet-S-assisted triaged screening achieved higher AUC than original screening in six senior and six junior radiologists (0.93 versus 0.91, and 0.92 versus 0.88, respectively, all P < .001). The model improved sensitivity for junior radiologists (88.2% versus 86.8%, P <.001). Notably, the model reduced radiologists’ workload by triaging 60.4% of cases as not potentially malignant, which did not require further interpretation. The model simultaneously decreased unnecessary fine needle aspiration rate from 38.7% to 14.9% and 11.5% when used independently or in combination with Thyroid Imaging Reporting and Data System, respectively. Conclusion ThyNet-S improved efficiency of thyroid cancer screening and optimized clinical decision-making. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
饱满语风完成签到 ,获得积分10
刚刚
2秒前
5秒前
zozox完成签到 ,获得积分10
5秒前
Jason-1024发布了新的文献求助10
8秒前
雪落你看不见完成签到,获得积分10
8秒前
Jason-1024完成签到,获得积分10
12秒前
Superman完成签到 ,获得积分10
13秒前
孟严青完成签到 ,获得积分0
17秒前
小白t73完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
23秒前
HUO完成签到 ,获得积分10
24秒前
微笑的半邪完成签到,获得积分10
27秒前
30秒前
zsl完成签到,获得积分10
34秒前
yaoyaomed完成签到 ,获得积分10
34秒前
乐观的问兰完成签到 ,获得积分10
37秒前
大气夜山完成签到 ,获得积分10
40秒前
东风压倒西风完成签到,获得积分10
41秒前
CNYDNZB完成签到 ,获得积分10
43秒前
豆豆给豆豆的求助进行了留言
44秒前
量子星尘发布了新的文献求助10
45秒前
ning_qing完成签到 ,获得积分10
45秒前
45秒前
CYYDNDB完成签到 ,获得积分10
53秒前
贰鸟发布了新的文献求助100
54秒前
Horizon完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
1分钟前
桃花源的瓶起子完成签到 ,获得积分10
1分钟前
莫耀文完成签到,获得积分10
1分钟前
LaTeXer给合适的芸遥的求助进行了留言
1分钟前
ECHO发布了新的文献求助10
1分钟前
DJ_Tokyo完成签到,获得积分0
1分钟前
MS903完成签到,获得积分10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
高分求助中
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4236451
求助须知:如何正确求助?哪些是违规求助? 3770096
关于积分的说明 11840929
捐赠科研通 3426766
什么是DOI,文献DOI怎么找? 1880697
邀请新用户注册赠送积分活动 933232
科研通“疑难数据库(出版商)”最低求助积分说明 840135