Adaptive Dual-Task Deep Learning for Automated Thyroid Cancer Triaging at Screening US

医学 麦克内马尔试验 放射科 医学物理学 急诊分诊台 人工智能 甲状腺结节 甲状腺 计算机科学 内科学 医疗急救 统计 数学
作者
Shaohong Wu,Ming-De Li,Wenjuan Tong,Yihao Liu,Rui Cui,Jinbo Hu,Mei-Qing Cheng,Weiping Ke,Xin-Xin Lin,Jiayi Lv,Longzhong Liu,Jie Ren,Guangjian Liu,Hong Yang,Wei Wang
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240271
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop an adaptive dual-task deep learning model (ThyNet-S) for detection and classification of thyroid lesions at US screening. Materials and Methods The retrospective study used a multicenter dataset comprising 35008 thyroid US images of 23294 individual examinations (mean age, 40.4 years ± 13.1[SD], 17587 female) from 7 medical centers during January 2009 and December 2021. Of these, 29004 images were used for model development and 6004 images for validation. The model determined cancer risk for each image and automatically triaged images with normal thyroid and benign nodules by dynamically integrating lesion detection through pixel-level feature analysis and lesion classification through deep semantic features analysis. Diagnostic performance of screening assisted by the model (ThyNet-S triaged screening) and traditional screening (radiologists alone) was assessed by comparing sensitivity, specificity, accuracy and AUC using McNemar’s test and Delong test. The influence of ThyNet-S on radiologist workload and clinical decision-making was also assessed. Results ThyNet-S-assisted triaged screening achieved higher AUC than original screening in six senior and six junior radiologists (0.93 versus 0.91, and 0.92 versus 0.88, respectively, all P < .001). The model improved sensitivity for junior radiologists (88.2% versus 86.8%, P <.001). Notably, the model reduced radiologists’ workload by triaging 60.4% of cases as not potentially malignant, which did not require further interpretation. The model simultaneously decreased unnecessary fine needle aspiration rate from 38.7% to 14.9% and 11.5% when used independently or in combination with Thyroid Imaging Reporting and Data System, respectively. Conclusion ThyNet-S improved efficiency of thyroid cancer screening and optimized clinical decision-making. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
小杨完成签到 ,获得积分10
5秒前
平常元灵完成签到,获得积分10
6秒前
8秒前
小白加油完成签到 ,获得积分10
9秒前
10秒前
11秒前
Rw发布了新的文献求助10
11秒前
13秒前
15秒前
mama发布了新的文献求助30
15秒前
李铛铛发布了新的文献求助10
18秒前
潘果果完成签到,获得积分10
18秒前
karcorl发布了新的文献求助10
19秒前
文献看不懂应助zone采纳,获得10
19秒前
20秒前
Rw完成签到,获得积分20
21秒前
23秒前
23秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得30
24秒前
赘婿应助科研通管家采纳,获得30
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得30
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
大模型应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
顾矜应助科研通管家采纳,获得10
25秒前
pluto应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得30
25秒前
JamesPei应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得50
25秒前
大个应助科研通管家采纳,获得80
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976