High Rate and Stable Cycling of Lithium Metal Anode

法拉第效率 电解质 阳极 电化学 金属锂 锂(药物) 无机化学 二甲氧基乙烷 金属 剥离(纤维) 材料科学 电镀(地质) 化学 冶金 电极 复合材料 物理化学 内分泌学 地质学 医学 地球物理学
作者
Jiangfeng Qian,Wesley A. Henderson,Wu Xu,Priyanka Bhattacharya,Mark H. Engelhard,Oleg Borodin,Ji‐Guang Zhang
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (15): 1155-1155 被引量:4
标识
DOI:10.1149/ma2015-01/15/1155
摘要

Lithium (Li) metal is an ideal anode material for Li batteries due to its extremely high theoretical specific capacity (3860 mAh g -1 ), low density (0.59 g cm -3 ) and the lowest negative electrochemical potential (−3.040 V vs. standard hydrogen electrode). 1 However, dendritic Li growth and limited Coulombic efficiency (CE) during Li deposition/stripping have prevented their applications in rechargeable Li batteries, especially at high current densities. 2,3 Electrolyte is one of the most critical elements that affect the cycling stability of Li metal anode, since Li is thermodynamically unstable with any kinds of organic solvents and salts. 4 The interactions between organic electrolytes and Li metal results in significant side reactions that not only lead to low CE but also consume Li metal and/or electrolyte materials. This phenomena becomes especially serious at high current densities. 5 Therefore, extensive studies have been conducted to understand how electrolyte formulations affect the cycling of Li metal electrodes. Here, we demonstrate that the use of a highly concentrated electrolyte composed of 1,2-dimethoxyethane (DME) solvent and the salt lithium bis(fluorosulfonyl)imide (LiFSI) results in the nondendritic plating of Li metal at high rates and with high efficiency. The electrochemical performance of Li metal plating/stripping with a concentrated LiFSI-DME electrolyte is shown in Figure 1. Figure 1a gives the typical voltage profile of Li plating/stripping on Cu substrate using different current densities varying from 0.2 to 10 mA/cm 2 . A pair of well-defined charge/discharge plateaus can be distinguished for all the voltage curves with applied current densities up to 10 mA/cm 2 , and almost all the Li deposition capacity can be recovered during the stripping process as seen from the charge capacity. The voltage polarization at 0.2 mA/cm 2 is as low as 13 mV, and just slightly increases to 122 mV at 4 mA/cm 2 . Even when the current density increases to 10 mA/cm 2 , the voltage polarization is still only 270 mV. The average Coulombic efficiency of the cycling is > 99% (0.2, 0.5, and 1 mA/cm 2 ), 98% (4 mA/cm 2 ), 97% (8 mA/cm 2 ), 96.7% (10 mA/cm 2 ), respectively. Long term cycle tests as shown in Figure 1b indicate the Coulombic efficiency keeps stable without any decrease up to 400 cycles, manifesting an extraordinary cycling stability of Li metal in this electrolyte. These results provide a route for future efforts to optimize electrolytes for the safe and highly efficient utilization of Li metal electrodes for advanced energy storage applications. Detailed electrochemical characterization and study of the fundamental mechanisms behind the high rate Li cycling and stability of the electrolytes will be discussed in the presentation. Figure 1. Electrochemical performance of Li metal plating/stripping with a concentrated LiFSI-DME electrolyte: (a) Voltage profile of Li plating/stripping on Cu substrate using different current densities. (b) Coulombic efficiency of Cu|Li cells at different current densities. Acknowledgements This work was supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the Basic Energy Sciences, Office of Science of the U.S. DOE. References W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, Energy Environ. Sci. , 7 , 513-537 (2014). D. Aurbach, E. zinigrad, Y. Cohen, and H. Teller, Solid state ionics , 148 , 405-416 (2002). F. Ding, W. Xu, X. Chen, J. Zhang, M. H. Engelhard, Y. Zhang, B. R. Johnson, J. V. Crum, T. A. Blake, X. Liu, J.-G. Zhang, J. Electrochem. Soc. 160, A1894-A1901 (2013). F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J.-G. Zhang, J. Am. Chem. Soc. , 135, 4450-4456 (2013). D. Lv, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin, J. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, P. Bhattacharya, J. Liu and J. Xiao, Adv. Energy Mater. , DOI: 10.1002/aenm.201400993 (2014). Figure 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzgf发布了新的文献求助10
1秒前
沉默的小雨点完成签到,获得积分20
3秒前
jack完成签到,获得积分10
4秒前
蒋若风完成签到,获得积分10
4秒前
娜娜完成签到,获得积分10
5秒前
笑点低的凉面完成签到,获得积分10
5秒前
看文献完成签到,获得积分10
6秒前
byyyy完成签到,获得积分10
6秒前
凤凰应助沉默的小雨点采纳,获得30
7秒前
可爱女人完成签到 ,获得积分10
10秒前
英俊的铭应助zzzzzgf采纳,获得10
11秒前
12秒前
一路向北4956完成签到,获得积分10
12秒前
gg完成签到,获得积分10
13秒前
xxx1234完成签到,获得积分10
15秒前
xiuxiu完成签到 ,获得积分10
16秒前
游大达完成签到,获得积分10
17秒前
研友_5Zl9D8完成签到,获得积分10
19秒前
Kitty完成签到,获得积分10
21秒前
积木完成签到,获得积分10
21秒前
Dr大壮完成签到,获得积分10
24秒前
冰销雪释完成签到,获得积分10
25秒前
蓝天黄土完成签到,获得积分10
25秒前
BisonHamster完成签到,获得积分10
26秒前
26秒前
王俊凯完成签到,获得积分10
26秒前
罗小学完成签到 ,获得积分10
27秒前
Iris完成签到,获得积分10
29秒前
蓝天碧海小西服完成签到,获得积分0
29秒前
士萧完成签到,获得积分10
30秒前
Doria完成签到 ,获得积分10
30秒前
Sophie完成签到,获得积分10
31秒前
zzuwxj完成签到,获得积分10
31秒前
33秒前
文静醉易完成签到,获得积分10
33秒前
Jasper应助科研通管家采纳,获得10
33秒前
Sophie发布了新的文献求助10
35秒前
忧郁如柏完成签到,获得积分10
37秒前
麻麻薯完成签到 ,获得积分10
38秒前
书生也是小郎中完成签到 ,获得积分10
39秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2407483
求助须知:如何正确求助?哪些是违规求助? 2104250
关于积分的说明 5311107
捐赠科研通 1831822
什么是DOI,文献DOI怎么找? 912761
版权声明 560691
科研通“疑难数据库(出版商)”最低求助积分说明 488032