Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov–Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death. In between the two extremes, we show how instability sets in, with anisotropy leading to drifting spirals, core defects resulting in spiral breakup and turbulence, chaotic oscillations, and target patterns, before the system finally reaches a non-oscillating steady state. On varying other stoichiometric parameters, we also illustrate the changes in system dynamics and wave properties.