Integrating Dynamic Network Analysis with AI for Enhanced Epitope Prediction in PD-L1:Affibody Interactions

表位 计算生物学 化学 表位定位 线性表位 生物系统 计算机科学 人工智能 生物 遗传学 抗原
作者
Diego E. B. Gomes,Byeongseon Yang,Rosario Vanella,Michael A. Nash,Rafael C. Bernardi
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (34): 23842-23853 被引量:5
标识
DOI:10.1021/jacs.4c05869
摘要

Understanding binding epitopes involved in protein–protein interactions and accurately determining their structure are long-standing goals with broad applicability in industry and biomedicine. Although various experimental methods for binding epitope determination exist, these approaches are typically low throughput and cost-intensive. Computational methods have potential to accelerate epitope predictions; however, recently developed artificial intelligence (AI)-based methods frequently fail to predict epitopes of synthetic binding domains with few natural homologues. Here we have developed an integrated method employing generalized-correlation-based dynamic network analysis on multiple molecular dynamics (MD) trajectories, initiated from AlphaFold2Multimer structures, to unravel the structure and binding epitope of the therapeutic PD-L1:Affibody complex. Both AlphaFold2 and conventional molecular dynamics trajectory analysis were ineffective in distinguishing between two proposed binding models, parallel and perpendicular. However, our integrated approach, utilizing dynamic network analysis, demonstrated that the perpendicular mode was significantly more stable. These predictions were validated using a suite of experimental epitope mapping protocols, including cross-linking mass spectrometry and next-generation sequencing-based deep mutational scanning. Conversely, AlphaFold3 failed to predict a structure bound in the perpendicular pose, highlighting the necessity for exploratory research in the search for binding epitopes and challenging the notion that AI-generated protein structures can be accepted without scrutiny. Our research underscores the potential of employing dynamic network analysis to enhance AI-based structure predictions for more accurate identification of protein–protein interaction interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGY完成签到 ,获得积分10
1秒前
许可发布了新的文献求助10
1秒前
tata0215完成签到 ,获得积分10
2秒前
zzzz发布了新的文献求助10
2秒前
hgc完成签到,获得积分10
6秒前
otaro完成签到,获得积分10
7秒前
靓仔完成签到,获得积分10
7秒前
8秒前
8秒前
蝈蝈完成签到,获得积分10
9秒前
我欲成粉绿完成签到,获得积分10
9秒前
town1223应助yyyyyy采纳,获得10
12秒前
粉色完成签到,获得积分10
12秒前
cooper完成签到 ,获得积分10
13秒前
顺心冰岚发布了新的文献求助10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
15秒前
等待冬亦应助科研通管家采纳,获得20
15秒前
Hello应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得30
15秒前
15秒前
15秒前
zhouzhou打工人完成签到,获得积分10
16秒前
感动的飞鸟完成签到,获得积分10
16秒前
啦啦啦啦啦啦啦完成签到,获得积分10
17秒前
沫荔完成签到 ,获得积分10
17秒前
hc完成签到,获得积分10
17秒前
梓歆完成签到 ,获得积分10
18秒前
lhx发布了新的文献求助10
18秒前
19秒前
19秒前
passion完成签到,获得积分10
20秒前
科目三应助玊尔采纳,获得10
20秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843860
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544206
捐赠科研通 3107013
什么是DOI,文献DOI怎么找? 1711358
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774409