AMFGNN: an adaptive multi-view fusion graph neural network model for drug prediction

人工神经网络 计算机科学 人工智能 药品 图形 机器学习 医学 药理学 理论计算机科学
作者
He Fang,Lian Duan,Guangnan Xing,Xiaojing Chang,Huixia Zhou,Mengxian Yu
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:16
标识
DOI:10.3389/fphar.2025.1543966
摘要

Drug development is a complex and lengthy process, and drug-disease association prediction aims to significantly improve research efficiency and success rates by precisely identifying potential associations. However, existing methods for drug-disease association prediction still face limitations in feature representation, feature integration, and generalization capabilities. To address these challenges, we propose a novel model named AMFGNN (Adaptive Multi-View Fusion Graph Neural Network). This model leverages an adaptive graph neural network and a graph attention network to extract drug features and disease features, respectively. These features are then used as the initial representations of nodes in the drug-disease association network to enable efficient information fusion. Additionally, the model incorporates a contrastive learning mechanism, which enhances the similarity and differentiation between drugs and diseases through cross-view contrastive learning, thereby improving the accuracy of association prediction. Furthermore, a Kolmogorov-Arnold network is employed to perform weighted fusion of various final features, optimizing prediction performance. AMFGNN demonstrates a significant advantage in predictive performance, achieving an average AUC value of 0.9453, which reflects the model's high accuracy in prediction. Cross-validation results across multiple datasets indicate that AMFGNN outperforms seven advanced drug-disease association prediction methods. Additionally, case studies on Hepatoblastoma, asthma and Alzheimer's disease further confirm the model's effectiveness and potential value in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenqingsong完成签到,获得积分20
1秒前
1秒前
1秒前
XLeft发布了新的文献求助10
1秒前
科研通AI5应助小马采纳,获得30
2秒前
2秒前
殷一腾完成签到,获得积分10
2秒前
zhyi发布了新的文献求助10
2秒前
烟花应助甜甜采纳,获得10
3秒前
儒雅的夏山完成签到,获得积分10
3秒前
晚秋北斗完成签到 ,获得积分10
4秒前
4秒前
wangjianyu发布了新的文献求助10
4秒前
好好发布了新的文献求助10
7秒前
顺顺利利发布了新的文献求助10
7秒前
8秒前
周周南完成签到 ,获得积分10
9秒前
xxxx完成签到,获得积分10
9秒前
小九202301发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
唐皮皮完成签到,获得积分10
11秒前
记忆完成签到,获得积分10
11秒前
冷酷鱼完成签到 ,获得积分10
11秒前
xinxin完成签到,获得积分10
13秒前
14秒前
ATLI发布了新的文献求助10
14秒前
15秒前
橘海万青发布了新的文献求助10
15秒前
吴Sehun完成签到,获得积分10
16秒前
Lucas应助科研小谢采纳,获得10
17秒前
ding应助好好采纳,获得10
18秒前
18秒前
19秒前
二掌柜发布了新的文献求助10
19秒前
星辰大海应助heli采纳,获得10
20秒前
小小怪发布了新的文献求助10
20秒前
霸王龙完成签到,获得积分10
20秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825871
求助须知:如何正确求助?哪些是违规求助? 3368162
关于积分的说明 10449560
捐赠科研通 3087618
什么是DOI,文献DOI怎么找? 1698750
邀请新用户注册赠送积分活动 816999
科研通“疑难数据库(出版商)”最低求助积分说明 769991