A combined model integrating deep learning, radiomics, and clinical ultrasound features for predicting BRAF V600E mutation in papillary thyroid carcinoma with Hashimoto’s thyroiditis

医学 甲状腺癌 无线电技术 甲状腺炎 甲状腺 突变 超声波 V600E型 病理 乳头状癌 肿瘤科 癌症研究 内科学 放射科 生物 基因 生物化学
作者
Pengfei Zhu,Xiaofeng Zhang,Pu Zhou,Jiangyuan Ben,Hao Wang,Shu‐E Zeng,Xin‐Wu Cui,Ying He
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:16
标识
DOI:10.3389/fendo.2025.1641037
摘要

This study aims to develop an integrated model that combines radiomics, deep learning features, and clinical and ultrasound characteristics for predicting BRAF V600E mutations in patients with papillary thyroid carcinoma (PTC) combined with Hashimoto's thyroiditis (HT). This retrospective study included 717 thyroid nodules from 672 patients with PTC combined with HT from four hospitals in China. Deep learning and radiomics were employed to extract deep learning and radiomics features from ultrasound images. Feature selection was performed using Pearson's correlation coefficient, the Minimum Redundancy Maximum Relevance (mRMR) algorithm, and LASSO regression. The optimal algorithm was selected from nine machine learning algorithms for model construction, including the traditional radiomics model (RAD), the deep learning model (DL), and their fusion model (DL_RAD). Additionally, a final combined model was developed by integrating the DL_RAD model with clinical and ultrasound features. Model performance was assessed using AUC, calibration curves, and decision curve analysis (DCA), while SHAP analysis was used to interpret the contribution of each feature to the combined model's output. The combined model achieved superior diagnostic performance, with AUC values of 0.895, 0.864, and 0.815 in the training, validation, and external test sets, respectively, outperforming the RAD model, DL model, and RAD_DL model. DeLong test results indicated significant differences in the external test set (p<0.05). Further validation through calibration curves and DCA confirmed the model's robust performance. SHAP analysis revealed that RAD_DL signature, aspect ratio, extrathyroidal extension, and gender were key contributors to the model's predictions. The combined model integrating radiomics, deep learning features, and clinical as well as ultrasound characteristics exhibits excellent diagnostic performance in predicting BRAF V600E mutations in patients with PTC coexisting with HT, highlighting its strong potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炑屿完成签到,获得积分10
1秒前
2秒前
菲菲发布了新的文献求助50
4秒前
Yeeee完成签到 ,获得积分10
6秒前
6秒前
myg123发布了新的文献求助10
7秒前
桐桐应助rekha采纳,获得10
9秒前
七田皿完成签到,获得积分10
10秒前
左耳钉应助杨璇采纳,获得10
12秒前
SY发布了新的文献求助10
12秒前
山野雾灯完成签到 ,获得积分10
15秒前
小蘑菇应助绵杨采纳,获得10
15秒前
包佳梁完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
ding应助cancan采纳,获得10
17秒前
孟一完成签到,获得积分10
17秒前
19秒前
zakaria完成签到,获得积分10
19秒前
浮游应助SY采纳,获得10
20秒前
22秒前
佳丽完成签到,获得积分10
23秒前
23秒前
白昼星辰发布了新的文献求助10
23秒前
mxl发布了新的文献求助10
23秒前
黎明完成签到,获得积分10
23秒前
浮游应助tly采纳,获得10
23秒前
踏雪飞鸿完成签到,获得积分10
24秒前
丰富的天佑完成签到 ,获得积分10
25秒前
问天完成签到 ,获得积分10
26秒前
Fairy完成签到,获得积分10
26秒前
黎明发布了新的文献求助10
27秒前
隐形冷亦完成签到,获得积分10
27秒前
28秒前
28秒前
深情安青应助清爽慕山采纳,获得10
28秒前
Orange应助mnc采纳,获得10
30秒前
斯文败类应助MA采纳,获得10
31秒前
绵杨发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740