Interfacial Engineering of CoN/Co3O4 Heterostructured Hollow Nanoparticles Embedded in N‐Doped Carbon Nanowires as a Bifunctional Oxygen Electrocatalyst for Rechargeable Liquid and Flexible all‐Solid‐State Zn‐Air Batteries

双功能 电催化剂 过电位 材料科学 析氧 异质结 纳米颗粒 化学工程 碳纤维 纳米线 纳米技术 电极 催化作用 电化学 化学 复合数 光电子学 物理化学 复合材料 工程类 生物化学
作者
Qixing Zhou,Sike Zhang,Guangyao Zhou,Huan Pang,Mingyi Zhang,Lin Xu,Kang Sun,Yawen Tang,Kai Huang
出处
期刊:Small [Wiley]
卷期号:19 (28): e2301324-e2301324 被引量:27
标识
DOI:10.1002/smll.202301324
摘要

Abstract The design of economical, efficient, and robust bifunctional oxygen electrocatalysts is greatly imperative for the large‐scale commercialization of rechargeable Zn‐air battery (ZAB) technology. Herein, the neoteric design of an advanced bifunctional electrocatalyst composed of CoN/Co 3 O 4 heterojunction hollow nanoparticles in situ encapsulated in porous N‐doped carbon nanowires (denoted as CoN/Co 3 O 4 HNPs@NCNWs hereafter) is reported. The simultaneous implementation of interfacial engineering, nanoscale hollowing design, and carbon‐support hybridization renders the synthesized CoN/Co 3 O 4 HNPs@NCNWs with modified electronic structure, improved electric conductivity, enriched active sites, and shortened electron/reactant transport pathways. Density functional theory computations further demonstrate that the construction of a CoN/Co 3 O 4 heterojunction can optimize the reaction pathways and reduce the overall reaction barriers. Thanks to the composition and architectural superiorities, the CoN/Co 3 O 4 HNPs@NCNWs exhibit distinguished oxygen reduction reaction and oxygen evolution reaction performance with a low reversible overpotential of 0.725 V and outstanding stability in KOH medium. More encouragingly, the homemade rechargeable liquid and flexible all‐solid‐state ZABs utilizing CoN/Co 3 O 4 HNPs@NCNWs as the air‐cathode deliver higher peak power densities, larger specific capacities, and robust cycling stability, exceeding the commercial Pt/C + RuO 2 benchmark counterparts. The concept of heterostructure‐induced electronic modification herein may shed light on the rational design of advanced electrocatalysts for sustainable energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Koalas应助啦啦啦采纳,获得10
1秒前
浮游应助好名字采纳,获得10
1秒前
CCY发布了新的文献求助10
1秒前
wa发布了新的文献求助10
1秒前
苹果颖发布了新的文献求助10
2秒前
小蘑菇应助冰冰采纳,获得10
3秒前
3秒前
chengzi发布了新的文献求助10
3秒前
3秒前
目分发布了新的文献求助10
4秒前
深情安青应助吃草草没采纳,获得10
5秒前
5秒前
5秒前
7秒前
科研通AI2S应助我要做实验采纳,获得10
7秒前
11完成签到,获得积分10
7秒前
野草发布了新的文献求助10
8秒前
Lucas应助pp采纳,获得10
8秒前
sdaxczx发布了新的文献求助10
8秒前
Koalas应助cp1690采纳,获得10
9秒前
苹果颖完成签到,获得积分10
9秒前
金金发布了新的文献求助10
10秒前
10秒前
10秒前
Hello应助寻悦采纳,获得10
11秒前
顾矜应助目分采纳,获得10
11秒前
nana关注了科研通微信公众号
12秒前
12秒前
wyx发布了新的文献求助10
12秒前
13秒前
SciGPT应助chengzi采纳,获得10
13秒前
粗犷的尔阳完成签到,获得积分10
13秒前
13秒前
14秒前
16秒前
热心士萧发布了新的文献求助10
16秒前
dadii发布了新的文献求助10
18秒前
天真的皓轩完成签到,获得积分10
18秒前
18秒前
小池同学发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281