On the effectiveness of sparse regularization for structural damage diagnosis using dynamic strain measurements

结构健康监测 正规化(语言学) 有限元法 计算机科学 桁架 结构工程 数据挖掘 人工智能 工程类
作者
Peng Ren,Yang Chun-feng,Baojun Yuan
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:27 (4): 542-564 被引量:1
标识
DOI:10.1177/13694332241226781
摘要

Strain measurement is considered inherently suitable for structural health monitoring due to the ease of extracting damage-sensitive features. However, the need for pre- and post-damage feature extraction, especially in the absence of baseline data for aging infrastructures in service, has engendered skepticism concerning the practical efficacy of strain-based damage diagnosis. To address this, this study incorporates limited prior information on structures and sparse regularization to ascertain the locations and severities of structural damages based on dynamic strain response data. A model-assisted approach is presented, including the typical three-step process of damage feature extraction, finite element modeling, and analytical sensitivity-based model updating. In particular, sparse regularization technique aids in robustly identifying structural damage by tackling the hindrance encountered during model updating, involving ill-posedness and the impact of measurement and modeling uncertainties. The approach’s effectiveness is substantiated through a numerical investigation of a Bailey truss bridge model exposed to operating loads and an experiment with a steel beam equipped with an array of fiber Bragg grating sensors. The results demonstrate that using the proposed damage diagnosis approach enables accurately locating and quantifying element-level damages, even when significant modeling errors or a lack of baseline features exist.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喔喔佳佳发布了新的文献求助10
刚刚
科研通AI6应助111采纳,获得10
1秒前
1秒前
2秒前
2秒前
共享精神应助BX-95采纳,获得30
2秒前
善学以致用应助十个勤天采纳,获得10
2秒前
上官若男应助弧光采纳,获得10
2秒前
一一发布了新的文献求助10
3秒前
Nora完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
4秒前
JJS完成签到,获得积分10
4秒前
4秒前
LIZ发布了新的文献求助10
4秒前
情怀应助研友_ZGDVz8采纳,获得10
4秒前
4秒前
香蕉觅云应助大yiyi采纳,获得10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
小马甲应助yuaner采纳,获得10
7秒前
勤恳雅莉应助生动的凡采纳,获得20
7秒前
暖暖完成签到,获得积分10
7秒前
善学以致用应助shi hui采纳,获得10
7秒前
7秒前
石榴发布了新的文献求助10
7秒前
成就莞完成签到,获得积分10
8秒前
陈一昂发布了新的文献求助10
8秒前
8秒前
肖122发布了新的文献求助10
8秒前
充电宝应助陈昊采纳,获得10
9秒前
9秒前
Mai6655发布了新的文献求助10
9秒前
shen完成签到,获得积分20
9秒前
小蘑菇应助啊哦采纳,获得10
10秒前
way完成签到,获得积分10
11秒前
伍佰完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5654244
求助须知:如何正确求助?哪些是违规求助? 4792626
关于积分的说明 15067959
捐赠科研通 4812818
什么是DOI,文献DOI怎么找? 2574739
邀请新用户注册赠送积分活动 1530248
关于科研通互助平台的介绍 1488972