已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Time-Constrained Interception with Bounded Field of View and Input Using Barrier Lyapunov Approach

拦截 有界函数 李雅普诺夫函数 控制理论(社会学) 李雅普诺夫方程 领域(数学) 计算机科学 数学优化 数学 应用数学 数学分析 物理 非线性系统 控制(管理) 人工智能 生态学 量子力学 纯数学 生物
作者
Abhishek Singh,Shashi Ranjan Kumar,Dwaipayan Mukherjee
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:: 1-10 被引量:2
标识
DOI:10.2514/1.g007770
摘要

No AccessEngineering NotesTime-Constrained Interception with Bounded Field of View and Input Using Barrier Lyapunov ApproachSwati Singh, Shashi Ranjan Kumar and Dwaipayan MukherjeeSwati SinghIndian Institute of Technology Bombay, Powai 400 076, Mumbai, India*Ph.D. Research Scholar, Intelligent Systems and Control Laboratory, Department of Aerospace Engineering; .Search for more papers by this author, Shashi Ranjan Kumar https://orcid.org/0000-0001-6446-7281Indian Institute of Technology Bombay, Powai 400 076, Mumbai, India†Associate Professor, Intelligent Systems and Control Laboratory, Department of Aerospace Engineering; . Senior Member AIAA.Search for more papers by this author and Dwaipayan Mukherjee https://orcid.org/0000-0001-6993-9305Indian Institute of Technology Bombay, Powai 400 076, Mumbai, India‡Assistant Professor, Department of Electrical Engineering; .Search for more papers by this authorPublished Online:4 Oct 2023https://doi.org/10.2514/1.G007770SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Li Z. and Ding Z., “Robust Cooperative Guidance Law for Simultaneous Arrival,” IEEE Transactions on Control Systems Technology, Vol. 27, No. 3, 2018, pp. 1360–1367. https://doi.org/10.1109/TCST.2018.2804348 Google Scholar[2] Lu P., “What Is Guidance?” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 7, 2021, pp. 1237–1238. https://doi.org/10.2514/1.G006191 LinkGoogle Scholar[3] Harl N. and Balakrishnan S., “Impact Time and Angle Guidance with Sliding Mode Control,” IEEE Transactions on Control Systems Technology, Vol. 20, No. 6, 2011, pp. 1436–1449. https://doi.org/10.1109/TCST.2011.2169795 CrossrefGoogle Scholar[4] Seo M.-G., Lee C.-H. and Tahk M.-J., “New Design Methodology for Impact Angle Control Guidance for Various Missile and Target Motions,” IEEE Transactions on Control Systems Technology, Vol. 26, No. 6, 2017, pp. 2190–2197. https://doi.org/10.1109/TCST.2017.2749560 Google Scholar[5] Rao S. and Ghose D., “Terminal Impact Angle Constrained Guidance Laws Using Variable Structure Systems Theory,” IEEE Transactions on Control Systems Technology, Vol. 21, No. 6, 2013, pp. 2350–2359. https://doi.org/10.1109/TCST.2013.2276476 CrossrefGoogle Scholar[6] Jeon I.-S., Lee J.-I. and Tahk M.-J., “Impact-Time-Control Guidance Law for Anti-Ship Missiles,” IEEE Transactions on Control Systems Technology, Vol. 14, No. 2, 2006, pp. 260–266. https://doi.org/10.1109/TCST.2005.863655 CrossrefGoogle Scholar[7] Jeon I.-S., Lee J.-I. and Tahk M.-J., “Impact-Time-Control Guidance with Generalized Proportional Navigation Based on Nonlinear Formulation,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, 2016, pp. 1885–1890. https://doi.org/10.2514/1.G001681 LinkGoogle Scholar[8] Kumar S. R. and Ghose D., “Impact Time and Angle Control Guidance,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2015-0616, 2015. LinkGoogle Scholar[9] Cho D., Kim H. J. and Tahk M.-J., “Nonsingular Sliding Mode Guidance for Impact Time Control,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 1, 2015, pp. 61–68. https://doi.org/10.2514/1.G001167 LinkGoogle Scholar[10] Tekin R., Erer K. S. and Holzapfel F., “Adaptive Impact Time Control Via Look-Angle Shaping Under Varying Velocity,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 12, 2017, pp. 3247–3255. https://doi.org/10.2514/1.G002981 LinkGoogle Scholar[11] Tekin R., Erer K. S. and Holzapfel F., “Polynomial Shaping of the Look Angle for Impact-Time Control,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2668–2673. https://doi.org/10.2514/1.G002751 LinkGoogle Scholar[12] Tekin R., Erer K. S. and Holzapfel F., “Control of Impact Time with Increased Robustness via Feedback Linearization,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 7, 2016, pp. 1682–1689. https://doi.org/10.2514/1.G001719 LinkGoogle Scholar[13] Lu P., Doman D. B. and Schierman J. D., “Adaptive Terminal Guidance for Hypervelocity Impact in Specified Direction,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 269–278. https://doi.org/10.2514/1.14367 LinkGoogle Scholar[14] Chen X. and Wang J., “Nonsingular Sliding-Mode Control for Field-of-View Constrained Impact Time Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 5, 2017, pp. 1214–1222. https://doi.org/10.2514/1.G003146 LinkGoogle Scholar[15] Zhang Y., Wang X. and Wu H., “Impact Time Control Guidance Law with Field of View Constraint,” Aerospace Science and Technology, Vol. 39, Dec. 2014, pp. 361–369. https://doi.org/10.1016/j.ast.2014.10.002 CrossrefGoogle Scholar[16] Zhang Y., Wang X. and Wu H., “Impact Time Control Guidance with Field-Of-View Constraint Accounting for Uncertain System Lag,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 230, No. 3, 2016, pp. 515–529. CrossrefGoogle Scholar[17] Kim H.-G. and Kim H. J., “Impact Time Control Guidance Considering Seeker’s Field-of-View Limits,” Conference on Decision and Control, IEEE Publ., Piscataway, NJ, 2016, pp. 4160–4165. Google Scholar[18] Kim H.-G. and Kim H. J., “Backstepping-Based Impact Time Control Guidance Law for Missiles with Reduced Seeker Field-of-View,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 1, 2019, pp. 82–94. https://doi.org/10.1109/TAES.2018.2848319 CrossrefGoogle Scholar[19] Jeon I.-S. and Lee J.-I., “Impact-Time-Control Guidance Law with Constraints on Seeker Look Angle,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 5, 2017, pp. 2621–2627. https://doi.org/10.1109/TAES.2017.2698837 CrossrefGoogle Scholar[20] Lee S., Ann S., Cho N. and Kim Y., “Capturability of Guidance Laws for Interception of Nonmaneuvering Target with Field-of-View Limit,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 4, 2018, pp. 869–884. https://doi.org/10.2514/1.G003860 Google Scholar[21] Kim H.-G., Lee J.-Y., Kim H. J., Kwon H.-H. and Park J.-S., “Look-Angle-Shaping Guidance Law for Impact Angle and Time Control with Field-of-View Constraint,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 2, 2020, pp. 1602–1612. https://doi.org/10.1109/TAES.2019.2924175 CrossrefGoogle Scholar[22] Dhananjay N., Ghose D. and Bhat M. S., “Capturability of a Geometric Guidance Law in Relative Velocity Space,” IEEE Transactions on Control Systems Technology, Vol. 17, No. 1, 2008, pp. 111–122. https://doi.org/10.1109/TCST.2008.924561 Google Scholar[23] Dhananjay N., Ghose D. and Bhat M. S., “Performance Analysis of Guidance Laws Based on Timescale Gap,” IEEE Transactions on Control Systems Technology, Vol. 18, No. 3, 2009, pp. 574–590. https://doi.org/10.1109/TCST.2009.2024534 Google Scholar[24] Dhananjay N., Lum K.-Y. and Xu J.-X., “Proportional Navigation with Delayed Line-of-Sight Rate,” IEEE Transactions on Control Systems Technology, Vol. 21, No. 1, 2012, pp. 247–253. https://doi.org/10.1109/TCST.2011.2177980 Google Scholar[25] Chen X. and Wang J., “Nonsingular Sliding-Mode Control for Field-of-View Constrained Impact Time Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 5, 2018, pp. 1214–1222. https://doi.org/10.2514/1.G003146 LinkGoogle Scholar[26] Mukherjee D. and Kumar S. R., “Field-of-View Constrained Impact Time Guidance Against Stationary Targets,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 57, No. 5, 2021, pp. 3296–3306. https://doi.org/10.1109/TAES.2021.3074202 CrossrefGoogle Scholar[27] Kumar S. R. and Mukherjee D., “Three-Dimensional Nonsingular Impact Time Guidance with Limited Field-of-View,” IEEE Transactions on Control Systems Technology, Vol. 30, No. 4, 2021, pp. 1448–1459. https://doi.org/10.1109/TCST.2021.3116800 Google Scholar[28] Singh S., Kumar S. R. and Mukherjee D., “Barrier Lyapunov Function Based Impact Time Guidance with Field-of-View and Input Constraints,” IFAC-PapersOnLine, Vol. 55, No. 22, 2022, pp. 412–417. https://doi.org/10.1016/j.ifacol.2023.03.069 CrossrefGoogle Scholar[29] Zarchan P., Tactical and Strategic Missile Guidance, AIAA, Reston, VA, 2012, pp. 21–433. Google Scholar[30] Rout R., Cui R. and Han Z., “Modified Line-of-Sight Guidance Law with Adaptive Neural Network Control of Underactuated Marine Vehicles with State and Input Constraints,” IEEE Transactions on Control Systems Technology, Vol. 28, No. 5, 2020, pp. 1902–1914. https://doi.org/10.1109/TCST.2020.2998798 Google Scholar[31] Zheng Z., Huang Y., Xie L. and Zhu B., “Adaptive Trajectory Tracking Control of a Fully Actuated Surface Vessel with Asymmetrically Constrained Input and Output,” IEEE Transactions on Control Systems Technology, Vol. 26, No. 5, 2017, pp. 1851–1859. https://doi.org/10.1109/TCST.2017.2728518 Google Scholar[32] Zhang J., Sun W. and Jing H., “Nonlinear Robust Control of Antilock Braking Systems Assisted by Active Suspensions for Automobile,” IEEE Transactions on Control Systems Technology, Vol. 27, No. 3, 2018, pp. 1352–1359. https://doi.org/10.1109/TCST.2018.2810823 Google Scholar[33] Tee K. P., Ge S. S. and Tay E. H., “Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems,” Automatica, Vol. 45, No. 4, 2009, pp. 918–927. https://doi.org/10.1016/j.automatica.2008.11.017 CrossrefGoogle Scholar[34] Ren B., Ge S. S., Tee K. P. and Lee T. H., “Adaptive Neural Control for Output Feedback Nonlinear Systems Using a Barrier Lyapunov Function,” IEEE Transactions on Neural Networks, Vol. 21, No. 8, 2010, pp. 1339–1345. https://doi.org/10.1109/TNN.2010.2047115 CrossrefGoogle Scholar[35] Sinha A., Kumar S. R. and Mukherjee D., “Three-Dimensional Guidance with Terminal Time Constraints for Wide Launch Envelops,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 2, 2021, pp. 343–359. https://doi.org/10.2514/1.G005180 LinkGoogle Scholar[36] Tee K. P., Ren B. and Ge S. S., “Control of Nonlinear Systems with Time-Varying Output Constraints,” Automatica, Vol. 47, No. 11, 2011, pp. 2511–2516. https://doi.org/10.1016/j.automatica.2011.08.044 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsControl TheoryGuidance and Navigational AlgorithmsGuidance, Navigation, and Control SystemsMissile Guidance and ControlMissile Systems, Dynamics and TechnologyNavigational GuidanceNonlinear Control TheoryOptimal Control TheorySpacecraft Guidance and Control KeywordsTerminal Sliding ModeGuidance, Navigation, and Control SystemsOptimal Control ProblemSpacecraft Guidance and ControlProportional NavigationGuidance and Navigational AlgorithmsImpact Time Control GuidanceNonlinear Control TheoryInput ConstraintsField-of-view constraintsPDF Received5 June 2023Accepted17 August 2023Published online4 October 2023
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xylor完成签到,获得积分10
1秒前
上官完成签到 ,获得积分10
1秒前
正在获取昵称中...完成签到,获得积分10
1秒前
ding应助ljz采纳,获得10
2秒前
细辛半夏兼五味完成签到 ,获得积分20
2秒前
2秒前
nk完成签到 ,获得积分10
3秒前
桐桐应助Carrots采纳,获得10
3秒前
啊盘完成签到 ,获得积分10
4秒前
Coffee完成签到 ,获得积分10
4秒前
5秒前
wfw完成签到,获得积分10
6秒前
怕黑寻双发布了新的文献求助10
7秒前
polite完成签到 ,获得积分10
7秒前
安然完成签到 ,获得积分10
7秒前
古铜完成签到 ,获得积分10
9秒前
zgq987发布了新的文献求助10
9秒前
tRNA完成签到 ,获得积分10
9秒前
HEIKU完成签到,获得积分0
10秒前
Bismarck完成签到,获得积分10
11秒前
conan完成签到,获得积分10
13秒前
亭2007完成签到 ,获得积分10
14秒前
山东老铁完成签到,获得积分10
14秒前
迟迟不吃吃完成签到 ,获得积分10
15秒前
liu完成签到 ,获得积分10
15秒前
刘辰完成签到 ,获得积分10
16秒前
16秒前
17秒前
小瓜完成签到 ,获得积分10
18秒前
wwf完成签到,获得积分10
18秒前
高高的山兰完成签到 ,获得积分10
19秒前
Milktea123完成签到,获得积分10
19秒前
想游泳的鹰完成签到,获得积分10
19秒前
SHD完成签到 ,获得积分10
20秒前
normankasimodo完成签到 ,获得积分10
21秒前
Mercury完成签到,获得积分10
22秒前
清秀饼干发布了新的文献求助10
23秒前
25秒前
TARGET完成签到 ,获得积分10
25秒前
伶俐的无颜完成签到 ,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784735
求助须知:如何正确求助?哪些是违规求助? 3329909
关于积分的说明 10243866
捐赠科研通 3045255
什么是DOI,文献DOI怎么找? 1671603
邀请新用户注册赠送积分活动 800486
科研通“疑难数据库(出版商)”最低求助积分说明 759424