Self-progress aggregate learning for weakly supervised salient object detection

计算机科学 人工智能 补语(音乐) 特征(语言学) 对象(语法) 水准点(测量) 模式识别(心理学) 骨料(复合) GSM演进的增强数据速率 卷积神经网络 突出 特征学习 学习对象 机器学习 大地测量学 基因 语言学 地理 材料科学 互补 生物化学 化学 复合材料 哲学 表型
作者
Wanchun Sun,Xin Feng,Jingyao Liu,Hui Ma
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (6): 065405-065405 被引量:1
标识
DOI:10.1088/1361-6501/acc198
摘要

Abstract The task of salient object detection aims to find the most salient object from the samples. In the field of weakly supervised learning, the existing weakly supervised salient object detection (WSSOD) methods often fail to utilize the limited label information (such as self-affinity or edge features, and scale transform) for learning. Therefore, this paper proposes a self-progress aggregate learning method named SPAL. First, the feature optimization scheme of the edge information module is put forward based on analysis of the problems existing in the current convolutional neural network for detection of the edge information of the object. Obviously, the salient object has a low requirement for high-level information, In particular, in order to improve the utilization rate of the network structure without increasing its complexity, the affinity global context is design in view of the particularity of the structure of a salient object. The structure of a salient object not only depends on the deep-level semantic feature information to a certain extent, but also has a certain guiding effect on the object position and edge information. Second, high-level affinity information is used to complement the slight-level edge information globally, and the scale attention module is adopted to guide the network to adapt the multi-scale reinforcement feature learning ability for the salient object regions. Our method SPAL achieved better experimental results than the other competitive models for comparison on five benchmark data sets (i.e. for DUTS-TEST, compared with CCFNet our method achieved an improvement of 0.6% for mean absolute error (MAE), 5.1% for F b , and 1.1% for E ℰ ), which demonstrates the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dream发布了新的文献求助10
1秒前
drtianyunhong完成签到,获得积分0
1秒前
zzz发布了新的文献求助10
1秒前
斯文败类应助YoYo采纳,获得10
1秒前
ficus_min发布了新的文献求助10
2秒前
2秒前
3秒前
Stella驳回了赘婿应助
3秒前
SYLH应助YY采纳,获得10
3秒前
4秒前
小橙完成签到,获得积分10
4秒前
璇儿发布了新的文献求助10
5秒前
徐徐徐徐发布了新的文献求助10
6秒前
6秒前
李健应助zzz采纳,获得10
7秒前
思源应助橙子采纳,获得10
7秒前
YanK完成签到,获得积分20
7秒前
小橙发布了新的文献求助10
8秒前
乐观又晴完成签到,获得积分10
8秒前
乐观生活发布了新的文献求助10
8秒前
失眠的香菇完成签到 ,获得积分10
9秒前
lzxucn完成签到,获得积分10
10秒前
lu发布了新的文献求助10
11秒前
bkagyin应助kai采纳,获得10
13秒前
li发布了新的文献求助10
14秒前
YanK发布了新的文献求助10
14秒前
LZY发布了新的文献求助10
15秒前
16秒前
16秒前
斯文的小旋风应助wen123采纳,获得10
18秒前
ficus_min完成签到,获得积分10
19秒前
19秒前
20秒前
tengfei完成签到,获得积分10
20秒前
punchline发布了新的文献求助30
20秒前
iNk应助YanK采纳,获得10
21秒前
21秒前
湖医小朱完成签到,获得积分10
22秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Building Trust: Overcoming Suspicion in International Conflict 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825982
求助须知:如何正确求助?哪些是违规求助? 3368267
关于积分的说明 10450191
捐赠科研通 3087810
什么是DOI,文献DOI怎么找? 1698813
邀请新用户注册赠送积分活动 817107
科研通“疑难数据库(出版商)”最低求助积分说明 770039