亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting gene sequences with AI to study codon usage patterns

密码子使用偏好性 起始密码子 基因 遗传学 计算生物学 计算机科学 人工智能 生物 基因组 基序列
作者
Tomer Sidi,Shir Bahiri-Elitzur,Tamir Tuller,Rachel Kolodny
标识
DOI:10.1101/2024.02.11.579798
摘要

Abstract Selective pressure acts on the codon use, optimizing multiple, overlapping signals that are only partially understood. We trained artificial intelligence (AI) models to predict the codons given their amino acid sequence in the eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe and the bacteria Escherichia coli and Bacillus subtilis , to study the extent to which we can learn patterns in naturally occurring codons to improve predictions. We trained our models on a subset of the proteins, and evaluated their predictions on large, separate sets of proteins of varying lengths and expression levels. Our models significantly outperformed naïve frequency-based approaches, demonstrating that there are dependencies between codons that can be learned to better predict evolutionary-selected codon usage. The prediction accuracy advantage of our models is greater for highly expressed genes and it is greater in bacteria than eukaryotes, supporting the hypothesis that there is a monotonic relationship between selective pressure for complex codon patterns and effective population size. Also, in S . cerevisiae and bacteria, our models were more accurate for longer proteins, suggesting that the AI system may have learned patterns related to co-translational folding. Gene functionality and conservation were also important determinants that affect the performance of our models. Finally, we showed that using information encoded in homologous proteins has only a minor effect on prediction accuracy, perhaps due to complex codon-usage codes in genes undergoing rapid evolution. In summary, our study employing contemporary AI methods offers a new perspective on codon usage patterns and a novel tool to optimize codon usage in endogenous and heterologous proteins. Significance statement Can one predict codon sequences used by an organism to encode a given amino acid sequence? This is difficult, because there are exponentially many codon sequences that can encode the same amino acid sequence and evolution is stochastic. Indeed, codons frequencies vary, a phenomenon known as codon-bias, yet we improve upon frequency-based predictions using contemporary AI tools that learn complex patterns and capture interactions between codons. Because our predictions are tested fairly, on cases not seen during the training process, accurate predictions suggest that these learned patterns are not random, and may be related to the evolutionary process. Thus, studying where our predictions are more accurate, is expected to reveal novel insights related to the way evolution shapes coding regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
7秒前
顾矜应助annis采纳,获得10
18秒前
33秒前
39秒前
MchemG应助kento采纳,获得50
39秒前
41秒前
美罗培南完成签到,获得积分0
42秒前
Imstemcell发布了新的文献求助10
43秒前
43秒前
46秒前
科研小菜狗完成签到 ,获得积分10
47秒前
吃了吃了完成签到,获得积分10
53秒前
Akim应助bearhong采纳,获得20
56秒前
1分钟前
1分钟前
Criminology34举报可爱如音求助涉嫌违规
1分钟前
kento完成签到,获得积分0
1分钟前
1分钟前
1分钟前
annis发布了新的文献求助10
1分钟前
1分钟前
MEDwhy发布了新的文献求助10
1分钟前
1分钟前
bearhong发布了新的文献求助20
1分钟前
我是老大应助西米采纳,获得10
1分钟前
1分钟前
菠萝包完成签到 ,获得积分10
1分钟前
1分钟前
MEDwhy完成签到,获得积分10
1分钟前
慕青应助HD采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
西米发布了新的文献求助10
1分钟前
1分钟前
南寅完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418250
求助须知:如何正确求助?哪些是违规求助? 4533960
关于积分的说明 14142924
捐赠科研通 4450231
什么是DOI,文献DOI怎么找? 2441133
邀请新用户注册赠送积分活动 1432869
关于科研通互助平台的介绍 1410170