深度学习
人工智能
计算机科学
卷积神经网络
机器学习
预处理器
国际机构
脑瘤
癌症检测
人工神经网络
癌症
医学
病理
内科学
作者
Venkatesh S. Lotlikar,Nitin Satpute,Aditya Gupta
标识
DOI:10.2174/1573405617666210923144739
摘要
According to the International Agency for Research on Cancer (IARC), the mortality rate due to brain tumors is 76%. It is required to detect the brain tumors as early as possible and to provide the patient with the required treatment to avoid any fatal situation. With the recent advancement in technology, it is possible to automatically detect the tumor from images such as Magnetic Resonance Iimaging (MRI) and computed tomography scans using a computer-aided design. Machine learning and deep learning techniques have gained significance among researchers in medical fields, especially Convolutional Neural Networks (CNN), due to their ability to analyze large amounts of complex image data and perform classification. The objective of this review article is to present an exhaustive study of techniques such as preprocessing, machine learning, and deep learning that have been adopted in the last 15 years and based on it to present a detailed comparative analysis. The challenges encountered by researchers in the past for tumor detection have been discussed along with the future scopes that can be taken by the researchers as the future work. Clinical challenges that are encountered have also been discussed, which are missing in existing review articles.
科研通智能强力驱动
Strongly Powered by AbleSci AI