A Surface Defect Detection Framework for Glass Bottle Bottom Using Visual Attention Model and Wavelet Transform

人工智能 计算机科学 计算机视觉 稳健性(进化) 小波变换 像素 模式识别(心理学) 熵(时间箭头) 分割 小波 物理 生物化学 化学 量子力学 基因
作者
Xianen Zhou,Yaonan Wang,Qing Zhu,Jianxu Mao,Changyan Xiao,Xiao Lu,Hui Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2189-2201 被引量:124
标识
DOI:10.1109/tii.2019.2935153
摘要

Glass bottles must be thoroughly inspected before they are used for packaging. However, the vision inspection of bottle bottoms for defects remains a challenging task in quality control due to inaccurate localization, the difficulty in detecting defects in the texture region, and the intrinsically nonuniform brightness across the central panel. To overcome these problems, we propose a surface defect detection framework, which is composed of three main parts. First, a new localization method named entropy rate superpixel circle detection (ERSCD), which combines least-squares circle detection and entropy rate superpixel (ERS) with an improved randomized circle detection, is proposed to accurately obtain the region of interest (ROI) of the bottle bottom. Then, according to the structure-property, the ROI is divided into two measurement regions: central panel region and annular texture region. For the former, a defect detection method named frequency-tuned anisotropic diffusion super-pixel segmentation (FTADSP) that integrates frequency-tuned salient region detection (FT), anisotropic diffusion, and an improved superpixel segmentation is proposed to precisely detect the regions and boundaries of defects. For the latter, a defect detection strategy called wavelet transform multiscale filtering (WTMF) based on a wavelet transform and a multiscale filtering algorithm is proposed to reduce the influence of texture and to improve the robustness to localization error. The proposed framework is tested on four data sets obtained by our designed vision system. The experimental results demonstrate that our framework achieves the best performance compared with many traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定从凝完成签到,获得积分10
刚刚
大个应助41采纳,获得10
1秒前
123完成签到 ,获得积分10
1秒前
Vaibhav完成签到,获得积分10
1秒前
团子发布了新的文献求助20
2秒前
sasasas完成签到,获得积分10
2秒前
sansronds发布了新的文献求助10
3秒前
3秒前
5秒前
666完成签到,获得积分10
5秒前
8秒前
万能图书馆应助黄雨辰采纳,获得10
8秒前
谢大海完成签到,获得积分10
8秒前
455发布了新的文献求助10
9秒前
9秒前
研友_VZG7GZ应助沐晨采纳,获得10
10秒前
10秒前
黄晟原发布了新的文献求助10
10秒前
XRenaissance发布了新的文献求助10
11秒前
orixero应助宇文青寒采纳,获得10
12秒前
12秒前
斯文败类应助元锦程采纳,获得10
12秒前
12秒前
完美世界应助guocan采纳,获得10
12秒前
月蚀六花发布了新的文献求助30
14秒前
Pawn给Pawn的求助进行了留言
16秒前
16秒前
41发布了新的文献求助10
16秒前
少年旭完成签到,获得积分10
16秒前
17秒前
深情安青应助455采纳,获得10
18秒前
18秒前
18秒前
搜集达人应助小扁大王采纳,获得10
19秒前
19秒前
鹅毛大雪发布了新的文献求助10
20秒前
淳于白凝完成签到,获得积分10
20秒前
犹可歌发布了新的文献求助10
20秒前
21秒前
星河鹭起发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5060533
求助须知:如何正确求助?哪些是违规求助? 4284746
关于积分的说明 13352610
捐赠科研通 4102586
什么是DOI,文献DOI怎么找? 2246170
邀请新用户注册赠送积分活动 1251909
关于科研通互助平台的介绍 1182637