A Surface Defect Detection Framework for Glass Bottle Bottom Using Visual Attention Model and Wavelet Transform

人工智能 计算机科学 计算机视觉 稳健性(进化) 小波变换 像素 模式识别(心理学) 熵(时间箭头) 分割 小波 生物化学 量子力学 基因 物理 化学
作者
Xianen Zhou,Yaonan Wang,Qing Zhu,Jianxu Mao,Changyan Xiao,Xiao Lu,Hui Zhang
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 2189-2201 被引量:118
标识
DOI:10.1109/tii.2019.2935153
摘要

Glass bottles must be thoroughly inspected before they are used for packaging. However, the vision inspection of bottle bottoms for defects remains a challenging task in quality control due to inaccurate localization, the difficulty in detecting defects in the texture region, and the intrinsically nonuniform brightness across the central panel. To overcome these problems, we propose a surface defect detection framework, which is composed of three main parts. First, a new localization method named entropy rate superpixel circle detection (ERSCD), which combines least-squares circle detection and entropy rate superpixel (ERS) with an improved randomized circle detection, is proposed to accurately obtain the region of interest (ROI) of the bottle bottom. Then, according to the structure-property, the ROI is divided into two measurement regions: central panel region and annular texture region. For the former, a defect detection method named frequency-tuned anisotropic diffusion super-pixel segmentation (FTADSP) that integrates frequency-tuned salient region detection (FT), anisotropic diffusion, and an improved superpixel segmentation is proposed to precisely detect the regions and boundaries of defects. For the latter, a defect detection strategy called wavelet transform multiscale filtering (WTMF) based on a wavelet transform and a multiscale filtering algorithm is proposed to reduce the influence of texture and to improve the robustness to localization error. The proposed framework is tested on four data sets obtained by our designed vision system. The experimental results demonstrate that our framework achieves the best performance compared with many traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
D-L@rabbit完成签到 ,获得积分10
4秒前
4秒前
EMMA发布了新的文献求助10
6秒前
6秒前
tsntn完成签到,获得积分10
8秒前
爆米花应助周小鱼采纳,获得10
9秒前
温暖的颜演完成签到 ,获得积分10
9秒前
Orchid发布了新的文献求助10
10秒前
认真的问枫完成签到 ,获得积分10
16秒前
CipherSage应助EMMA采纳,获得30
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
诸葛御风应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
19秒前
20秒前
20秒前
夜白应助科研通管家采纳,获得20
20秒前
Jasper应助科研通管家采纳,获得10
20秒前
无限的山水完成签到,获得积分10
21秒前
天天完成签到 ,获得积分10
25秒前
27秒前
专注的水壶完成签到 ,获得积分10
27秒前
29秒前
高贵的晓筠完成签到 ,获得积分10
30秒前
大个应助zhouzhou采纳,获得10
30秒前
tinydog完成签到,获得积分10
30秒前
可口可乐完成签到,获得积分10
31秒前
517完成签到 ,获得积分10
31秒前
彪壮的绮烟完成签到,获得积分10
32秒前
天天发布了新的文献求助10
32秒前
周小鱼发布了新的文献求助10
34秒前
天真的乌完成签到 ,获得积分10
35秒前
SciEngineerX完成签到,获得积分10
41秒前
ywindm完成签到,获得积分10
45秒前
快乐的水杯完成签到,获得积分10
45秒前
洁净灭男完成签到,获得积分10
49秒前
shepherd完成签到,获得积分10
50秒前
ltf完成签到,获得积分10
51秒前
张宁波完成签到,获得积分10
51秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726