Identification and Validation of Potential Immune‐Related Genes for Endometriosis

免疫系统 子宫内膜异位症 子宫内膜 生物 免疫组织化学 抗原 基因 免疫学 癌症研究 内科学 医学 遗传学 内分泌学
作者
Yi Zhang,Lulu Wu,Wenzhen Yuan,Zhen Ren,Li Tang,Jilin Kuang,Li Lin,Yingying Liang
出处
期刊:American Journal of Reproductive Immunology [Wiley]
卷期号:93 (5) 被引量:1
标识
DOI:10.1111/aji.70091
摘要

ABSTRACT Objective This study aimed to identify and validate potential immune‐related genes in endometriosis (Ems) through comprehensive bioinformatics analysis and immunohistochemistry (IHC) verification. Design Using data from the GEO database, single‐cell RNA sequencing (scRNA) data and traditional bulk RNA sequencing data were analyzed to identify differentially expressed genes related to the immune system. Immunological analysis confirmed alterations in immune cells associated with Ems. Machine learning techniques were employed to identify characteristic immune genes of eutopic and ectopic endometria, which were then validated through IHC experiments. Main Outcome Measures Immunological analysis revealed distinct variations in the enrichment of macrophages and NK cells in Ems. Functional enrichment analysis revealed a decrease in NK cell toxicity in both ectopic and eutopic endometria, activation of M2 macrophages in the ectopic endometrium supporting the survival of ectopic endothelial cells, and the presence of lipid antigens and signaling between immune cells facilitating the development of Ems. Machine learning algorithms revealed that TGFBR1 is a characteristic immune gene associated with the eutopic endometrium and that GIMAP4 is associated with the ectopic endometrium; this conclusion was also confirmed by IHC. Results Macrophage and NK cell enrichment was significantly increased in endometria from patients with Ems. TGFBR1 is a characteristic immune gene associated with the eutopic endometrium, whereas GIMAP4 is associated with the ectopic endometrium. Conclusion These findings provide new insights for the clinical diagnosis and selection of immune‐related targets for Ems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助将将将采纳,获得10
1秒前
1秒前
xiaozhu发布了新的文献求助10
1秒前
1秒前
2秒前
hrpppp发布了新的文献求助200
2秒前
4秒前
残剑月发布了新的文献求助10
4秒前
yukang完成签到,获得积分10
5秒前
6秒前
eraygt发布了新的文献求助10
6秒前
6秒前
7秒前
寒素完成签到,获得积分10
8秒前
Owen应助hxc采纳,获得10
9秒前
隐形曼青应助残剑月采纳,获得10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
完美的向真完成签到,获得积分10
11秒前
张二田完成签到,获得积分10
12秒前
Lucas应助z104采纳,获得10
12秒前
12秒前
chaotong发布了新的文献求助10
12秒前
所所应助hhh采纳,获得10
13秒前
NexusExplorer应助猪猪hero采纳,获得10
14秒前
隐形曼青应助晚风采纳,获得10
14秒前
qxy完成签到,获得积分20
15秒前
哈哈哈开开心心完成签到,获得积分10
16秒前
小蘑菇应助Carl采纳,获得10
16秒前
yzy完成签到,获得积分10
18秒前
zhaoaotao发布了新的文献求助10
19秒前
科研通AI6应助负责惊蛰采纳,获得10
20秒前
bkagyin应助enen采纳,获得10
20秒前
YOLO发布了新的文献求助10
22秒前
23秒前
24秒前
科研菜鱼完成签到,获得积分10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698799
关于积分的说明 14899078
捐赠科研通 4737011
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511067
关于科研通互助平台的介绍 1473605