Construction of predictive models for contralateral occult thyroid carcinoma and central lymph node metastasis in unilateral papillary thyroid carcinoma using machine learning

神秘的 医学 甲状腺癌 淋巴结转移 淋巴结 转移 甲状腺 乳头状癌 病理 放射科 肿瘤科 内科学 癌症 替代医学
作者
Yaqi Zhao,Chunping Liu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:15: 1623075-1623075
标识
DOI:10.3389/fonc.2025.1623075
摘要

Background This study aimed to develop predictive models based on preoperative clinicopathological and imaging features to accurately assess the individual risk of contralateral occult thyroid carcinoma (OTC) and determine the number of central lymph node metastasis (CLNM) in patients with unilateral papillary thyroid carcinoma, thereby providing actionable guidance for surgical planning. Methods Seven widely-used machine learning algorithms were employed to develop predictive models. Hyperparameter tuning was performed via cross-validation in combination with grid search. The models were subsequently trained and evaluated by using the optimal hyperparameter combinations. To facilitate comparative analysis, ROC curves, calibration curves were generated and DCA was performed. The optimal model was then selected on the basis of this comprehensive evaluation. Furthermore, a clinical prediction model was constructed utilizing the significant predictors identified. Results The logistic regression model was identified to be the optimal predictive model. For the clinical prediction model of OTC, the following independent variables were incorporated: body mass index, and ultrasonographic findings, including capsular disruption, number of malignant nodules within a unilateral lobe, sum of the longest diameter (SLD) of tumors, and the presence of isthmic malignant nodule(s). This model yielded an area under the ROC curve (AUC) of 0.74 and 0.70 in the training and validation cohorts, respectively. For the clinical prediction model of ≥5 CLNM, the incorporated independent variables included: age, sex, chronic lymphocytic thyroiditis, and ultrasonographic features covering malignant nodules located near the isthmus, SLD, capsular disruption, and calcification. This model produced an AUC of 0.75 and 0.71 in the training and validation cohorts, respectively. Decision curve analysis indicated that clinical interventions guided by the two models could provide net benefit within threshold probability ranges of 10% to 90% and 10% to 70% for patients with PTC. And the calibration curves demonstrated a good agreement between model predictions and actual observations. Conclusion This study developed and validated clinical prediction models to estimate the risk of contralateral OTC and the presence of ≥5 CLNM in patients with unilateral PTC. These models were designed to prevent overtreatment in low-risk patients while providing evidence-based guidance for decision-making about treatment choice in high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏苏苏发布了新的文献求助30
刚刚
科研通AI6应助yx阿聪采纳,获得10
刚刚
李所当然完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
慕青应助诺之采纳,获得10
3秒前
深情安青应助寒酥采纳,获得10
3秒前
忐忑的书桃完成签到 ,获得积分10
3秒前
szj发布了新的文献求助10
3秒前
3秒前
ikun完成签到,获得积分10
4秒前
小马甲应助落泪静殇采纳,获得10
4秒前
黑球完成签到,获得积分10
5秒前
852应助神勇的又槐采纳,获得10
5秒前
万能图书馆应助nichen采纳,获得10
5秒前
5秒前
Jasper应助慕容真采纳,获得10
5秒前
慕青应助现实的无敌采纳,获得10
6秒前
二季发布了新的文献求助10
6秒前
TripleY发布了新的文献求助10
7秒前
小包Gn完成签到,获得积分10
7秒前
a502410600完成签到,获得积分10
7秒前
7秒前
随心完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
直率青寒发布了新的文献求助10
8秒前
9秒前
琦铉完成签到,获得积分10
9秒前
9秒前
Owen应助摸鱼宝采纳,获得10
9秒前
zz发布了新的文献求助10
10秒前
SciGPT应助单身的老三采纳,获得10
11秒前
英俊的铭应助LouieHuang采纳,获得10
11秒前
李爱国应助szj采纳,获得10
11秒前
文艺安青完成签到 ,获得积分10
12秒前
小二郎应助12369采纳,获得10
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429177
求助须知:如何正确求助?哪些是违规求助? 4542702
关于积分的说明 14182174
捐赠科研通 4460498
什么是DOI,文献DOI怎么找? 2445741
邀请新用户注册赠送积分活动 1436952
关于科研通互助平台的介绍 1414120