RECISTSurv: Hybrid Multi-Task Transformer for Hepatocellular Carcinoma Response and Survival Evaluation

肝细胞癌 可解释性 实体瘤疗效评价标准 肝移植 计算机科学 危险系数 索拉非尼 人工智能 医学 移植 内科学 置信区间 临床试验 临床研究阶段
作者
Rushi Jiao,Qiuping Liu,Yao Zhang,آمنة خليفة محمد,Bingsen Xue,Yi Cheng,Kailan Yang,Xiaobo Liu,Jinrong Qu,Cheng Jin,Ya Zhang,Yanfeng Wang,Yudong Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:34: 3873-3888 被引量:1
标识
DOI:10.1109/tip.2025.3579200
摘要

Transarterial Chemoembolization (TACE) is a widely applied alternative treatment for patients with hepatocellular carcinoma who are not eligible for liver resection or transplantation. However, the clinical outcomes after TACE are highly heterogeneous. There remains an urgent need for effective and efficient strategies to accurately assess tumor response and predict long-term outcomes using longitudinal and multi-center datasets. To address this challenge, we here introduce RECISTSurv, a novel response-driven Transformer model that integrates multi-task learning with a response-driven co-attention mechanism to simultaneously perform liver and tumor segmentation, predict tumor response to TACE, and estimate overall survival based on longitudinal Computed Tomography (CT) imaging. The proposed Response-driven Co-attention layer models the interactions between pre-TACE and post-TACE features guided by the treatment response embedding. This design enables the model to capture complex relationships between imaging features, treatment response, and survival outcomes, thereby enhancing both prediction accuracy and interpretability. In a multi-center validation study, RECISTSurv-predicted prognosis has demonstrated superior precision than state-of-the-art methods with C-indexes ranging from 0.595 to 0.780. Furthermore, when integrated with multi-modal data, RECISTSurv has emerged as an independent prognostic factor in all three validation cohorts, with hazard ratio (HR) ranging from 1.693 to 20.7 ( $\text {P = 0.001-0.042}$ ). Our results highlight the potential of RECISTSurv as a powerful tool for personalized treatment planning and outcome prediction in hepatocellular carcinoma patients undergoing TACE. The experimental code is made publicly available at https://github.com/rushier/RECISTSurv.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花生仁发布了新的文献求助10
刚刚
QL发布了新的文献求助10
刚刚
Akim应助Evelyn采纳,获得30
刚刚
大模型应助负责的数据线采纳,获得10
1秒前
1秒前
lihuihui233完成签到,获得积分10
1秒前
闪闪的又亦完成签到,获得积分10
1秒前
2秒前
顾矜应助杰Sir采纳,获得10
2秒前
zc完成签到,获得积分10
2秒前
凌晴发布了新的文献求助10
3秒前
科研通AI6应助泷生采纳,获得10
3秒前
有本事1234完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
思源应助吃的饱饱呀采纳,获得10
3秒前
搞怪的羊完成签到,获得积分10
3秒前
liu完成签到,获得积分20
3秒前
花花发布了新的文献求助10
3秒前
FashionBoy应助顺利毕业采纳,获得30
3秒前
lynn发布了新的文献求助30
4秒前
优美紫槐发布了新的文献求助10
4秒前
4秒前
丁丁发布了新的文献求助10
4秒前
1111完成签到 ,获得积分10
4秒前
思源应助锅锅采纳,获得10
4秒前
奶油泡芙完成签到,获得积分10
4秒前
4秒前
4秒前
zz发布了新的文献求助10
5秒前
可爱的函函应助cxxxx采纳,获得30
5秒前
香蕉觅云应助piers采纳,获得10
6秒前
lingyan完成签到,获得积分10
6秒前
6秒前
淡然寄瑶发布了新的文献求助10
6秒前
7秒前
li12029完成签到,获得积分20
7秒前
7秒前
8秒前
万能图书馆应助min采纳,获得30
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614373
求助须知:如何正确求助?哪些是违规求助? 4699419
关于积分的说明 14903206
捐赠科研通 4739333
什么是DOI,文献DOI怎么找? 2547604
邀请新用户注册赠送积分活动 1511413
关于科研通互助平台的介绍 1473677