Unified Model for Children's Brain Image Segmentation With Co-Registration Framework Guided by Longitudinal MRI

图像配准 人工智能 图像分割 计算机科学 计算机视觉 分割 医学影像学 磁共振成像 神经影像学 图像处理 实时核磁共振成像 图像(数学) 放射科 医学 心理学 神经科学
作者
Lin Teng,Yichu He,Zehong Cao,Rui Hua,Ye Han,Qianjin Feng,Feng Shi,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (7): 4623-4632 被引量:5
标识
DOI:10.1109/jbhi.2024.3393974
摘要

Accurate segmentation of brain structures is crucial for analyzing longitudinal changes in children's brains. However, existing methods are mostly based on models established at a single time-point due to difficulty in obtaining annotated data and dynamic variation of tissue intensity. The main problem with such approaches is that, when conducting longitudinal analysis, images from different time points are segmented by different models, leading to significant variation in estimating development trends. In this paper, we propose a novel unified model with co-registration framework to segment children's brain images covering neonates to preschoolers, which is formulated as two stages. First, to overcome the shortage of annotated data, we propose building gold-standard segmentation with co-registration framework guided by longitudinal data. Second, we construct a unified segmentation model tailored to brain images at 0-6 years old through the introduction of a convolutional network (named SE-VB-Net), which combines our previously proposed VB-Net with Squeeze-and-Excitation (SE) block. Moreover, different from existing methods that only require both T1- and T2-weighted MR images as inputs, our designed model also allows a single T1-weighted MR image as input. The proposed method is evaluated on the main dataset (320 longitudinal subjects with average 2 time-points) and two external datasets (10 cases with 6-month-old and 40 cases with 20-45 weeks, respectively). Results demonstrate that our proposed method achieves a high performance (>92%), even over a single time-point. This means that it is suitable for brain image analysis with large appearance variation, and largely broadens the application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暴龙战士完成签到,获得积分20
1秒前
早安发布了新的文献求助30
1秒前
ii完成签到,获得积分10
1秒前
2秒前
2秒前
Eurus发布了新的文献求助10
2秒前
莫斯利安发布了新的文献求助10
2秒前
科目三应助闪闪路灯采纳,获得10
3秒前
顺利的夜梦完成签到,获得积分10
3秒前
科研通AI6应助初识采纳,获得10
3秒前
daypoi发布了新的文献求助10
3秒前
4秒前
4秒前
fth完成签到,获得积分10
4秒前
biofresh完成签到 ,获得积分10
4秒前
5秒前
5秒前
成事在人307完成签到,获得积分10
6秒前
Rain1god完成签到,获得积分10
6秒前
宋艳芳发布了新的文献求助10
6秒前
几星霜发布了新的文献求助10
6秒前
一二完成签到,获得积分10
6秒前
6秒前
Ariaxin发布了新的文献求助30
7秒前
8秒前
Gaolongzhen完成签到 ,获得积分10
9秒前
ZYY驳回了chenyh应助
9秒前
我是老大应助笨笨采纳,获得10
10秒前
yating完成签到,获得积分10
11秒前
米糊发布了新的文献求助10
12秒前
luokm发布了新的文献求助10
12秒前
12秒前
怕黑的觅海完成签到,获得积分10
14秒前
14秒前
zhangmeng99发布了新的文献求助10
15秒前
华仔应助冷傲蛋挞采纳,获得10
15秒前
15秒前
单纯夏烟完成签到,获得积分10
15秒前
慕青应助1111采纳,获得10
16秒前
哈哈哈来打我呀完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536205
求助须知:如何正确求助?哪些是违规求助? 4623940
关于积分的说明 14590018
捐赠科研通 4564400
什么是DOI,文献DOI怎么找? 2501719
邀请新用户注册赠送积分活动 1480512
关于科研通互助平台的介绍 1451794