亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fatigue crack monitoring of steel bridge with coating sensor based on potential difference method

涂层 结构工程 材料科学 巴黎法 结构健康监测 一致性(知识库) 裂缝闭合 复合材料 断裂力学 计算机科学 工程类 人工智能
作者
Wei Xu,Chuang Cui,Chun-kun Luo,Qinghua Zhang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:350: 128868-128868 被引量:14
标识
DOI:10.1016/j.conbuildmat.2022.128868
摘要

Fatigue cracks are common in steel bridges. For the real-time monitoring of fatigue cracks during the service of steel bridges, this study proposes a coating sensor for fatigue crack monitoring of steel bridges based on the potential difference method. First, the coating sensor was designed with three components including driving, sensing, and protective layers, and the characteristics of each part were measured. The equation for the spatial potential distribution of the coating sensor was derived and subsequently solved using a numerical simulation method. A theoretical model for crack growth prediction was proposed, and the parameters of the theoretical model were fitted using regression analysis associated with the simulated results. Six samples with artificial cracks were used to validate the accuracy of the theoretical model for crack-growth monitoring. Finally, the accuracy and applicability of the coating sensor for monitoring fatigue crack growth were verified using fatigue tests. The results indicate that the coating sensor can easily crack as fatigue cracks grow in steel plates. The predicted and actual crack lengths in both the artificial crack growth tests and real fatigue crack growth experiments demonstrate good consistency. Moreover, comparing crack monitoring by coated sensors with image recognition crack monitoring using high-definition cameras shows that the fatigue crack monitoring of them matches well, demonstrating the accuracy and applicability of the coating sensor and corresponding theoretical model for fatigue crack monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大气摩托发布了新的文献求助10
1秒前
小马甲应助xianyu采纳,获得10
5秒前
Orange应助shinn采纳,获得10
5秒前
Hansongao发布了新的文献求助10
12秒前
TXZ06完成签到,获得积分10
12秒前
13秒前
hodi完成签到,获得积分10
15秒前
心随以动完成签到 ,获得积分10
18秒前
答辩完成签到 ,获得积分10
18秒前
shinn发布了新的文献求助10
19秒前
24秒前
ipoerm完成签到,获得积分10
28秒前
修辛完成签到 ,获得积分10
29秒前
LBJ23发布了新的文献求助10
30秒前
Jy发布了新的文献求助10
34秒前
sfwrbh完成签到,获得积分10
38秒前
睡不醒的xx完成签到 ,获得积分10
43秒前
今后应助Jy采纳,获得10
48秒前
YZQ完成签到,获得积分20
57秒前
LBJ23完成签到,获得积分10
1分钟前
1分钟前
Jy发布了新的文献求助10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
Owen应助科研通管家采纳,获得10
1分钟前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
可爱的函函应助淡然绝山采纳,获得10
1分钟前
1分钟前
科研通AI2S应助shinn采纳,获得10
1分钟前
大模型应助伶俐夏旋采纳,获得10
1分钟前
韩华珍发布了新的文献求助10
1分钟前
共享精神应助YZQ采纳,获得10
1分钟前
希望天下0贩的0应助shinn采纳,获得10
1分钟前
1分钟前
Jy发布了新的文献求助10
1分钟前
1分钟前
萤火虫完成签到,获得积分10
1分钟前
1分钟前
JamesPei应助大气摩托采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5822423
求助须知:如何正确求助?哪些是违规求助? 5982371
关于积分的说明 15558829
捐赠科研通 4943577
什么是DOI,文献DOI怎么找? 2662858
邀请新用户注册赠送积分活动 1608931
关于科研通互助平台的介绍 1563854