A new solution framework for time-dependent reliability-based design optimization

数学优化 概率逻辑 可靠性(半导体) 计算机科学 离散化 约束(计算机辅助设计) 最优化问题 数学 几何学 量子力学 物理 数学分析 人工智能 功率(物理)
作者
Meide Yang,Dequan Zhang,Chao Jiang,Fang Wang,Xu Han
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:418: 116475-116475
标识
DOI:10.1016/j.cma.2023.116475
摘要

Time-dependent reliability-based design optimization (TRBDO) has attracted intensive research attentions in recent years by virtue of its unique ability to allow consideration of dynamic uncertainties caused by stochastic processes and material property degradation. However, existing TRBDO methods are generally too intricate to be practically applicable for practical engineering application. On top of that, extremely high computational cost for complex TRBDO problems further hinders its practicability. To facilitate smooth implementation via enhancing computational efficiency in solving TRBDO problems, this study proposes an innovative and efficient solution framework. The strategy is that time-dependent performance function in each probabilistic constraint is discretized into a series of instantaneous performance functions to transform the original TRBDO problem into a RBDO problem. The reliability of each probabilistic constraint in the transformed RBDO problem is then considered under extreme value condition. With engagement of the first-order reliability method, a double-loop method is proposed to transform the RBDO problem is transformed into two different triple-loop time-independent RBDO problem. However, the issue of expensive computational cost still persists due to the triple-loop structure and identification of temporal variables under extreme value condition. To this gap, a decoupled strategy is adopted to resolve the triple-loop structure into a series of cycles of double-loop reliability analyses and deterministic optimization. Two numerical examples and three engineering applications are employed to demonstrate the supreme computational performance of the currently proposed solution framework. Results show that the proposed framework is capable of achieving a reliable optimal design at a fast convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东东完成签到,获得积分10
1秒前
key完成签到,获得积分10
2秒前
lbq完成签到,获得积分10
3秒前
英俊的铭应助张正采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
云枝发布了新的文献求助10
5秒前
bkagyin应助愉快的依霜采纳,获得10
8秒前
8秒前
Felix0929完成签到,获得积分10
8秒前
9秒前
dianhuaxue发布了新的文献求助30
9秒前
10秒前
10秒前
11秒前
12秒前
嘉欣发布了新的文献求助10
13秒前
Hello应助杪春采纳,获得10
14秒前
张正发布了新的文献求助10
14秒前
15秒前
一二发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
yl完成签到 ,获得积分10
16秒前
LiuHanli发布了新的文献求助10
16秒前
小李新人完成签到 ,获得积分10
16秒前
tguczf发布了新的文献求助10
18秒前
18秒前
苹果颖完成签到,获得积分10
18秒前
bkagyin应助李华采纳,获得10
18秒前
19秒前
20秒前
深情安青应助123采纳,获得10
21秒前
22秒前
24秒前
活泼的鼠标完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
今晚打老虎完成签到,获得积分10
25秒前
唯我文乃发布了新的文献求助30
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430695
求助须知:如何正确求助?哪些是违规求助? 4543745
关于积分的说明 14189043
捐赠科研通 4462220
什么是DOI,文献DOI怎么找? 2446443
邀请新用户注册赠送积分活动 1437819
关于科研通互助平台的介绍 1414530