Feature weighted multi-view possibilistic c-means with feature reduction

聚类分析 特征(语言学) 降维 计算机科学 加权 数据挖掘 维数之咒 模式识别(心理学) 人工智能 维数(图论) 数学 哲学 语言学 医学 纯数学 放射科
作者
Josephine Bernadette M. Benjamin,Mehboob Ali,Miin‐Shen Yang
出处
期刊:Nucleation and Atmospheric Aerosols 卷期号:2472: 030007-030007 被引量:1
标识
DOI:10.1063/5.0092743
摘要

Datasets that are gathered from multiple sources are called multi-view datasets. These types of datasets represent different sets of feature attributes to form different views. Advanced computing and information technology have made it possible to collect and store a massive amount of data. As more features are added to each view, the data becomes sparse, and analysis suffers from the curse of dimensionality. Exploring and integrating diverse information from different views have been the focus of many approaches to improve clustering performance. The relationships among distinct views should not only be explored and analyze but should also consider the emerging high-dimensionality of each view to further improve the clustering performance. Recently, Yang and Benjamin proposed a clustering algorithm called "Feature Weighted Reduction PCM (FW-R-PCM) that calculates feature weights to identify relevant features and consequently, eliminates features that are irrelevant to reduce feature dimension from the entire feature space. In this paper, we propose a feature-weighted multi-view possibilistic c-means (FW-R-MVPCM) clustering algorithm, which extends FW-R-PCM to consider clustering high-dimensional multi-view datasets and perform feature reduction simultaneously. Our proposed FW-R-MVPCM can effectively improve the clustering performance using a weighting scheme that identifies, and selects relevant features from each view, and eliminate the irrelevant features, thus reducing the dimension of features in each view. Experiments on real datasets are performed to analyze the theoretical behavior of FW-R-MVPCM and to show its usefulness and effectiveness. Furthermore, FW-R-MVPCM is compared with FW-R-PCM, and other multi-view clustering algorithms such as WMCFS, SWVF, W-MV-PCM-L2, and WV-Co-FCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小破网发布了新的文献求助10
2秒前
PigGyue完成签到,获得积分10
2秒前
橙橙发布了新的文献求助10
3秒前
relink完成签到,获得积分10
4秒前
RR完成签到,获得积分10
6秒前
哟哟哟完成签到,获得积分10
7秒前
DJHKFD完成签到,获得积分10
8秒前
小黄人完成签到 ,获得积分10
9秒前
YC完成签到,获得积分10
10秒前
16秒前
20秒前
21秒前
21秒前
22秒前
hukun100完成签到,获得积分10
23秒前
小鱼马完成签到,获得积分10
23秒前
细腻的宫二完成签到,获得积分10
24秒前
Fu发布了新的文献求助10
24秒前
QQ发布了新的文献求助10
26秒前
明亮从云发布了新的文献求助10
26秒前
27秒前
一派倾城发布了新的文献求助10
27秒前
30秒前
zym428完成签到,获得积分10
30秒前
简默完成签到,获得积分10
32秒前
dasfdufos发布了新的文献求助30
32秒前
zhang完成签到,获得积分10
33秒前
35秒前
36秒前
36秒前
海海完成签到,获得积分10
38秒前
陶瓷小罐完成签到 ,获得积分10
39秒前
yy发布了新的文献求助10
40秒前
xiazq发布了新的文献求助10
41秒前
42秒前
Xiaoyan完成签到,获得积分10
43秒前
老张发布了新的文献求助10
44秒前
45秒前
雷雷完成签到,获得积分10
46秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367855
关于积分的说明 10448181
捐赠科研通 3087314
什么是DOI,文献DOI怎么找? 1698581
邀请新用户注册赠送积分活动 816841
科研通“疑难数据库(出版商)”最低求助积分说明 769973