A deep learning interpretable model for river dissolved oxygen multi-step and interval prediction based on multi-source data fusion

可解释性 水准点(测量) 计算机科学 分解 人工智能 序列(生物学) 预测建模 机器学习 数据挖掘 生态学 化学 大地测量学 生物化学 生物 地理
作者
Zhaocai Wang,Qingyu Wang,Zhixiang Liu,Tunhua Wu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:629: 130637-130637 被引量:72
标识
DOI:10.1016/j.jhydrol.2024.130637
摘要

Water bodies experiencing excessively low dissolved oxygen (DO) concentrations cannot sustain aquatic life and disrupt ecosystem balance, whereas overly high concentrations induce eutrophication, deteriorating the water environment's health. DO monitoring and safeguarding have perennially been paramount for global environmental protection authorities. Precise DO prediction is vital for water resource protection. Due to the non-linearity, complexity, and periodicity of DO data sequence, this study introduces a predictive model integrating multi-source data fusion, mode decomposition, improved sparrow search algorithm (SSA), attention (AT) mechanism, and gated recurrent unit (GRU). Initially, the original sequence undergoes decomposition via variational mode decomposition (VMD), with the resultant decomposed sub-sequences being trained and predicted using the GRU. The final predictive outcomes are derived by summing the predictions of each sub-sequence. This study substantiates the proposed model's efficacy by contrasting single models, various decomposition strategies, and combined models utilizing diverse methods. For the testing sets of two datasets, the Nash-Sutcliffe efficiency (NSE) coefficient, and the proportion of acceptable predictive values of the proposed model are 0.980, 100% and 0.987, 100%, respectively, outperforming other benchmark models. Additionally, the Diebold Mariano (DM) test, valley, multi-step ahead, interval predictions, and interpretability are employed to compare and analyze the model results. DM test results reveal that at a 1% significance level, the predictions from the models proposed in this study surpass those of other benchmark models. Through various approaches and perspectives' comparison and analysis, it is further demonstrated that the model developed herein displays exceptional prediction accuracy and can be effectively deployed across diverse watersheds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex应助shasha采纳,获得10
2秒前
CodeCraft应助十一玮采纳,获得10
2秒前
852应助你好呀采纳,获得10
2秒前
2秒前
吉吉关注了科研通微信公众号
2秒前
iyaaaa发布了新的文献求助10
3秒前
苏邑发布了新的文献求助10
4秒前
矮小的向雪完成签到 ,获得积分10
4秒前
4秒前
Crazy_Runner发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
xy发布了新的文献求助10
8秒前
热情沛文发布了新的文献求助20
10秒前
再现完成签到,获得积分10
10秒前
小马甲应助周小鱼采纳,获得10
10秒前
陈焕清完成签到,获得积分10
11秒前
陈十八发布了新的文献求助10
11秒前
research完成签到,获得积分10
11秒前
苏邑完成签到,获得积分10
12秒前
gcc发布了新的文献求助10
13秒前
小李老博应助拼搏梦旋采纳,获得10
14秒前
14秒前
14秒前
14秒前
田様应助小李老博采纳,获得10
14秒前
15秒前
16秒前
17秒前
情怀应助xy采纳,获得10
18秒前
18秒前
时间海完成签到,获得积分20
19秒前
一只桶完成签到 ,获得积分10
19秒前
早发paper早毕业完成签到,获得积分10
19秒前
周小鱼发布了新的文献求助10
20秒前
NetSenior完成签到,获得积分10
20秒前
西西发布了新的文献求助10
20秒前
blue发布了新的文献求助10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Anti-Politics Machine: Development, Depoliticization, and Bureaucratic Power in Lesotho James Ferguson 200
Strutts and the Arkwrights, 1758-1830 200
A monograph of the genera Conocybe and Pholiotina in Europe 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836894
求助须知:如何正确求助?哪些是违规求助? 3379126
关于积分的说明 10507658
捐赠科研通 3099003
什么是DOI,文献DOI怎么找? 1706635
邀请新用户注册赠送积分活动 821161
科研通“疑难数据库(出版商)”最低求助积分说明 772451