Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon

遥感 环境科学 数码相机 土壤碳 RGB颜色模型 高光谱成像 精准农业 含水量 土壤科学 计算机科学 土壤水分 人工智能 地质学 地理 农业 考古 岩土工程
作者
Asa Gholizadeh,Mohammadmehdi Saberioon,Raphael A. Viscarra Rossel,Luboš Borůvka,Aleš Klement
出处
期刊:Geoderma [Elsevier BV]
卷期号:357: 113972-113972 被引量:42
标识
DOI:10.1016/j.geoderma.2019.113972
摘要

Effective measurement and management of soil organic carbon (SOC) are essential for ecosystem function and food production. SOC has an important influence on soil properties and soil quality. Conventional SOC analysis is expensive and time-consuming. The development of spectral imaging sensors enables the acquisition of larger amounts of data using cheaper and faster methods. In addition, satellite remote sensing offers the potential to perform surveys more frequently and over larger areas. This research aimed to measure SOC content with colour as an indirect proxy. The measurements of soil colour were made at an agricultural site of the Czech Republic with an inexpensive digital camera and the Sentinel-2 remote sensor. Various soil colour spaces and colour indices derived from the (i) reflectance spectroscopy in the selected wavelengths of the visible (VIS) range (400–700 nm), (ii) RGB digital camera, and (iii) Sentinel-2 visible bands were used to train models for prediction of SOC. For modelling, we used the machine learning method, random forest (RF), and the models were validated with repeated 5-fold cross-validation. For prediction of SOC, the digital camera produced R2 = 0.85 and RMSEp = 0.11%, which had higher R2 and similar RMSEp compared to those obtained from the spectroscopy (R2 = 0.78 and RMSEp = 0.09%). Sentinel-2 predicted SOC with lower accuracy than other techniques; however, the results were still fair (R2 = 0.67 and RMSEp = 0.12%) and comparable with other methods. Using a digital camera with simple colour features was efficient. It enabled cheaper and accurate predictions of SOC compared to spectroscopic measurement and Sentinel-2 data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
刚刚
高大厉完成签到,获得积分10
刚刚
lor完成签到,获得积分10
1秒前
魔芋发布了新的文献求助10
1秒前
白衣未央发布了新的文献求助10
1秒前
2秒前
zzzz发布了新的文献求助10
4秒前
刘明坤完成签到 ,获得积分10
4秒前
6秒前
阳光完成签到,获得积分10
6秒前
7秒前
两滴水的云完成签到,获得积分10
7秒前
魔芋完成签到,获得积分20
8秒前
10秒前
11秒前
zzz发布了新的文献求助10
12秒前
白开水完成签到,获得积分10
13秒前
啵啵完成签到 ,获得积分10
15秒前
zzzz完成签到,获得积分20
16秒前
16秒前
研友_8yX0xZ完成签到,获得积分10
17秒前
无敌嘎嘎完成签到,获得积分10
17秒前
Kk完成签到,获得积分10
18秒前
混元形意太极门完成签到,获得积分10
18秒前
ding应助ceci采纳,获得30
21秒前
liubo完成签到,获得积分10
22秒前
我是老大应助okko采纳,获得10
24秒前
TAA66完成签到,获得积分10
26秒前
今后应助河鱼小白脸采纳,获得10
26秒前
宇文无施完成签到,获得积分10
27秒前
完美世界应助JC采纳,获得10
28秒前
十一发布了新的文献求助10
28秒前
29秒前
30秒前
可爱的函函应助扳迪采纳,获得10
32秒前
希望天下0贩的0应助蜉蝣采纳,获得10
33秒前
鸭鸭完成签到,获得积分10
33秒前
yxdeng完成签到 ,获得积分10
35秒前
35秒前
卢不评发布了新的文献求助30
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979